Mr Dk.'s BlogMr Dk.'s Blog
  • 🦆 About Me
  • ⛏️ Technology Stack
  • 🔗 Links
  • 🗒️ About Blog
  • Algorithm
  • C++
  • Compiler
  • Cryptography
  • DevOps
  • Docker
  • Git
  • Java
  • Linux
  • MS Office
  • MySQL
  • Network
  • Operating System
  • Performance
  • PostgreSQL
  • Productivity
  • Solidity
  • Vue.js
  • Web
  • Wireless
  • 🐧 How Linux Works (notes)
  • 🐧 Linux Kernel Comments (notes)
  • 🐧 Linux Kernel Development (notes)
  • 🐤 μc/OS-II Source Code (notes)
  • ☕ Understanding the JVM (notes)
  • ⛸️ Redis Implementation (notes)
  • 🗜️ Understanding Nginx (notes)
  • ⚙️ Netty in Action (notes)
  • ☁️ Spring Microservices (notes)
  • ⚒️ The Annotated STL Sources (notes)
  • ☕ Java Development Kit 8
GitHub
  • 🦆 About Me
  • ⛏️ Technology Stack
  • 🔗 Links
  • 🗒️ About Blog
  • Algorithm
  • C++
  • Compiler
  • Cryptography
  • DevOps
  • Docker
  • Git
  • Java
  • Linux
  • MS Office
  • MySQL
  • Network
  • Operating System
  • Performance
  • PostgreSQL
  • Productivity
  • Solidity
  • Vue.js
  • Web
  • Wireless
  • 🐧 How Linux Works (notes)
  • 🐧 Linux Kernel Comments (notes)
  • 🐧 Linux Kernel Development (notes)
  • 🐤 μc/OS-II Source Code (notes)
  • ☕ Understanding the JVM (notes)
  • ⛸️ Redis Implementation (notes)
  • 🗜️ Understanding Nginx (notes)
  • ⚙️ Netty in Action (notes)
  • ☁️ Spring Microservices (notes)
  • ⚒️ The Annotated STL Sources (notes)
  • ☕ Java Development Kit 8
GitHub
  • ☕ Java Development Kit 8
    • java.io

      • Abstract Class - java.io.InputStream
      • Abstract Class - java.io.OutputStream
      • Abstract Class - java.io.Reader
      • Class - java.io.BufferedInputStream
      • Class - java.io.BufferedOutputStream
      • Class - java.io.BufferedReader
      • Class - java.io.ByteArrayInputStream
      • Class - java.io.ByteArrayOutputStream
      • Class - java.io.DataInputStream
      • Class - java.io.DataOutputStream
      • Class - java.io.FileInputStream
      • Class - java.io.FileOutputStream
      • Class - java.io.FileReader
      • Class - java.io.FilterInputStream
      • Class - java.io.FilterOutputStream
      • Class - java.io.InputStreamReader
      • Class - java.io.PipedInputStream
      • Class - java.io.PipedOutputStream
      • Class - java.io.PushbackInputStream
      • Class - java.io.SequenceInputStream
      • Interface - java.io.Closeable
    • java.lang

      • Abstract Class - java.lang.AbstractStringBuilder
      • Class - java.lang.Integer
      • Class - java.lang.String
      • Class - java.lang.ThreadLocal
    • java.nio

      • Abstract Class - java.nio.Buffer
    • java.util

      • Abstract Class - java.util.AbstractCollection
      • Abstract Class - java.util.AbstractList
      • Abstract Class - java.util.AbstractMap
      • Abstract Class - java.util.AbstractQueue
      • Abstract Class - java.util.AbstractSet
      • Class - java.util.ArrayList
      • Class - java.util.HashMap
      • Class - java.util.HashSet
      • Class - java.util.IdentityHashMap
      • Class - java.util.LinkedHashMap
      • Class - java.util.LinkedHashSet
      • Class - java.util.LinkedList
      • Class - java.util.PriorityQueue
      • Class - java.util.TreeMap
      • Class - java.util.TreeSet
      • Interface - java.util.Collection
      • Interface - java.util.Deque
      • Interface - java.util.Iterator
      • Interface - java.util.Iterator
      • Interface - java.util.Map
      • Interface - java.util.NavigableMap
      • Interface - java.util.NavigableSet
      • Interface - java.util.Queue
      • Interface - java.util.Set
      • Interface - java.util.SortedMap
      • Interface - java.util.SortedSet
    • java.util.concurrent

      • Abstract Class - java.util.concurrent.atomic.AtomicIntegerFieldUpdater
      • Abstract Class - java.util.concurrent.locks.AbstractExecutorService
      • Abstract Class - java.util.concurrent.locks.AbstractOwnableSynchronizer
      • Abstract Class - java.util.concurrent.locks.AbstractQueuedSynchronizer
      • Class - java.util.concurrent.ArrayBlockingQueue
      • Class - java.util.concurrent.ConcurrentHashMap
      • Class - java.util.concurrent.ConcurrentLinkedQueue
      • Class - java.util.concurrent.DelayQueue
      • Class - java.util.concurrent.ExecutorCompletionService
      • Class - java.util.concurrent.FutureTask
      • Class - java.util.concurrent.LinkedBlockingQueue
      • Class - java.util.concurrent.LinkedTransferQueue
      • Class - java.util.concurrent.SynchronousQueue
      • Class - java.util.concurrent.ThreadPoolExecutor
      • Class - java.util.concurrent.atomic.AtomicInteger
      • Class - java.util.concurrent.atomic.AtomicIntegerArray
      • Class - java.util.concurrent.atomic.AtomicReference
      • Class - java.util.concurrent.atomic.AtomicStampedReference
      • Class - java.util.concurrent.locks.ReentrantLock
      • Class - java.util.concurrent.locks.ReentrantReadWriteLock
      • Interface - java.util.concurrent.BlockingQueue
      • Interface - java.util.concurrent.CompletionService
      • Interface - java.util.concurrent.Executor
      • Interface - java.util.concurrent.ExecutorService
      • Interface - java.util.concurrent.Future
      • Interface - java.util.concurrent.ScheduledExecutorService
      • Interface - java.util.concurrent.TransferQueue
      • Interface - java.util.concurrent.locks.Lock
      • Interface - java.util.concurrent.locks.ReadWriteLock

Class - java.lang.String

Created by : Mr Dk.

2020 / 06 / 04 17:11

Nanjing, Jiangsu, China


Definition

/**
 * The {@code String} class represents character strings. All
 * string literals in Java programs, such as {@code "abc"}, are
 * implemented as instances of this class.
 * <p>
 * Strings are constant; their values cannot be changed after they
 * are created. String buffers support mutable strings.
 * Because String objects are immutable they can be shared. For example:
 * <blockquote><pre>
 *     String str = "abc";
 * </pre></blockquote><p>
 * is equivalent to:
 * <blockquote><pre>
 *     char data[] = {'a', 'b', 'c'};
 *     String str = new String(data);
 * </pre></blockquote><p>
 * Here are some more examples of how strings can be used:
 * <blockquote><pre>
 *     System.out.println("abc");
 *     String cde = "cde";
 *     System.out.println("abc" + cde);
 *     String c = "abc".substring(2,3);
 *     String d = cde.substring(1, 2);
 * </pre></blockquote>
 * <p>
 * The class {@code String} includes methods for examining
 * individual characters of the sequence, for comparing strings, for
 * searching strings, for extracting substrings, and for creating a
 * copy of a string with all characters translated to uppercase or to
 * lowercase. Case mapping is based on the Unicode Standard version
 * specified by the {@link java.lang.Character Character} class.
 * <p>
 * The Java language provides special support for the string
 * concatenation operator (&nbsp;+&nbsp;), and for conversion of
 * other objects to strings. String concatenation is implemented
 * through the {@code StringBuilder}(or {@code StringBuffer})
 * class and its {@code append} method.
 * String conversions are implemented through the method
 * {@code toString}, defined by {@code Object} and
 * inherited by all classes in Java. For additional information on
 * string concatenation and conversion, see Gosling, Joy, and Steele,
 * <i>The Java Language Specification</i>.
 *
 * <p> Unless otherwise noted, passing a <tt>null</tt> argument to a constructor
 * or method in this class will cause a {@link NullPointerException} to be
 * thrown.
 *
 * <p>A {@code String} represents a string in the UTF-16 format
 * in which <em>supplementary characters</em> are represented by <em>surrogate
 * pairs</em> (see the section <a href="Character.html#unicode">Unicode
 * Character Representations</a> in the {@code Character} class for
 * more information).
 * Index values refer to {@code char} code units, so a supplementary
 * character uses two positions in a {@code String}.
 * <p>The {@code String} class provides methods for dealing with
 * Unicode code points (i.e., characters), in addition to those for
 * dealing with Unicode code units (i.e., {@code char} values).
 *
 * @author  Lee Boynton
 * @author  Arthur van Hoff
 * @author  Martin Buchholz
 * @author  Ulf Zibis
 * @see     java.lang.Object#toString()
 * @see     java.lang.StringBuffer
 * @see     java.lang.StringBuilder
 * @see     java.nio.charset.Charset
 * @since   JDK1.0
 */

public final class String
    implements java.io.Serializable, Comparable<String>, CharSequence {

}

String 是不可修改的,因此一些常量可以被共享。这个类中提供了一切与 String 相关的操作。另外,Java 语言还为 String 提供了拼接运算符的支持 - +。


内部数据结构,用于存放字符和 hash。

/** The value is used for character storage. */
private final char value[];

/** Cache the hash code for the string */
private int hash; // Default to 0

String 类支持超级多形式的构造函数。字符串信息来源可以是另一个 String 对象,可以是一个 char[] 字符数组,也可以是一个 Unicode 代码点的数组,还可以直接是 byte[] 的字节数组。同时,也可以接收 offset、length 等参数控制字符串的起始字节和长度。

空构造函数默认创建一个空字符串:

/**
 * Initializes a newly created {@code String} object so that it represents
 * an empty character sequence.  Note that use of this constructor is
 * unnecessary since Strings are immutable.
 */
public String() {
    this.value = "".value;
}
/**
 * Initializes a newly created {@code String} object so that it represents
 * the same sequence of characters as the argument; in other words, the
 * newly created string is a copy of the argument string. Unless an
 * explicit copy of {@code original} is needed, use of this constructor is
 * unnecessary since Strings are immutable.
 *
 * @param  original
 *         A {@code String}
 */
public String(String original) {
    this.value = original.value;
    this.hash = original.hash;
}

/**
 * Allocates a new {@code String} so that it represents the sequence of
 * characters currently contained in the character array argument. The
 * contents of the character array are copied; subsequent modification of
 * the character array does not affect the newly created string.
 *
 * @param  value
 *         The initial value of the string
 */
public String(char value[]) {
    this.value = Arrays.copyOf(value, value.length);
}

/**
 * Allocates a new {@code String} that contains characters from a subarray
 * of the character array argument. The {@code offset} argument is the
 * index of the first character of the subarray and the {@code count}
 * argument specifies the length of the subarray. The contents of the
 * subarray are copied; subsequent modification of the character array does
 * not affect the newly created string.
 *
 * @param  value
 *         Array that is the source of characters
 *
 * @param  offset
 *         The initial offset
 *
 * @param  count
 *         The length
 *
 * @throws  IndexOutOfBoundsException
 *          If the {@code offset} and {@code count} arguments index
 *          characters outside the bounds of the {@code value} array
 */
public String(char value[], int offset, int count) {
    if (offset < 0) {
        throw new StringIndexOutOfBoundsException(offset);
    }
    if (count <= 0) {
        if (count < 0) {
            throw new StringIndexOutOfBoundsException(count);
        }
        if (offset <= value.length) {
            this.value = "".value;
            return;
        }
    }
    // Note: offset or count might be near -1>>>1.
    if (offset > value.length - count) {
        throw new StringIndexOutOfBoundsException(offset + count);
    }
    this.value = Arrays.copyOfRange(value, offset, offset+count);
}

以下构造函数用于从一个 Unicode 代码点数组构造一个字符串。根据编码的不同,一个 BMP 代码点可能对应于 1 个 char,也可能对应两个 char。因此要先将代码点遍历一遍,确认字符串的长度并开辟内存;然后再遍历代码点,依次转换为 char 后放入开辟的内存中:

/**
 * Allocates a new {@code String} that contains characters from a subarray
 * of the <a href="Character.html#unicode">Unicode code point</a> array
 * argument.  The {@code offset} argument is the index of the first code
 * point of the subarray and the {@code count} argument specifies the
 * length of the subarray.  The contents of the subarray are converted to
 * {@code char}s; subsequent modification of the {@code int} array does not
 * affect the newly created string.
 *
 * @param  codePoints
 *         Array that is the source of Unicode code points
 *
 * @param  offset
 *         The initial offset
 *
 * @param  count
 *         The length
 *
 * @throws  IllegalArgumentException
 *          If any invalid Unicode code point is found in {@code
 *          codePoints}
 *
 * @throws  IndexOutOfBoundsException
 *          If the {@code offset} and {@code count} arguments index
 *          characters outside the bounds of the {@code codePoints} array
 *
 * @since  1.5
 */
public String(int[] codePoints, int offset, int count) {
    if (offset < 0) {
        throw new StringIndexOutOfBoundsException(offset);
    }
    if (count <= 0) {
        if (count < 0) {
            throw new StringIndexOutOfBoundsException(count);
        }
        if (offset <= codePoints.length) {
            this.value = "".value;
            return;
        }
    }
    // Note: offset or count might be near -1>>>1.
    if (offset > codePoints.length - count) {
        throw new StringIndexOutOfBoundsException(offset + count);
    }

    final int end = offset + count;

    // Pass 1: Compute precise size of char[]
    int n = count;
    for (int i = offset; i < end; i++) {
        int c = codePoints[i];
        if (Character.isBmpCodePoint(c))
            continue;
        else if (Character.isValidCodePoint(c))
            n++;
        else throw new IllegalArgumentException(Integer.toString(c));
    }

    // Pass 2: Allocate and fill in char[]
    final char[] v = new char[n];

    for (int i = offset, j = 0; i < end; i++, j++) {
        int c = codePoints[i];
        if (Character.isBmpCodePoint(c))
            v[j] = (char)c;
        else
            Character.toSurrogates(c, v, j++);
    }

    this.value = v;
}

以下函数将一个字节数组根据指定编码解码为一个字符串。根据编码不同,构造出的字符串长度可能与指定的字节数不同:

/* Common private utility method used to bounds check the byte array
 * and requested offset & length values used by the String(byte[],..)
 * constructors.
 */
private static void checkBounds(byte[] bytes, int offset, int length) {
    if (length < 0)
        throw new StringIndexOutOfBoundsException(length);
    if (offset < 0)
        throw new StringIndexOutOfBoundsException(offset);
    if (offset > bytes.length - length)
        throw new StringIndexOutOfBoundsException(offset + length);
}

/**
 * Constructs a new {@code String} by decoding the specified subarray of
 * bytes using the specified charset.  The length of the new {@code String}
 * is a function of the charset, and hence may not be equal to the length
 * of the subarray.
 *
 * <p> The behavior of this constructor when the given bytes are not valid
 * in the given charset is unspecified.  The {@link
 * java.nio.charset.CharsetDecoder} class should be used when more control
 * over the decoding process is required.
 *
 * @param  bytes
 *         The bytes to be decoded into characters
 *
 * @param  offset
 *         The index of the first byte to decode
 *
 * @param  length
 *         The number of bytes to decode
 *
 * @param  charsetName
 *         The name of a supported {@linkplain java.nio.charset.Charset
 *         charset}
 *
 * @throws  UnsupportedEncodingException
 *          If the named charset is not supported
 *
 * @throws  IndexOutOfBoundsException
 *          If the {@code offset} and {@code length} arguments index
 *          characters outside the bounds of the {@code bytes} array
 *
 * @since  JDK1.1
 */
public String(byte bytes[], int offset, int length, String charsetName)
        throws UnsupportedEncodingException {
    if (charsetName == null)
        throw new NullPointerException("charsetName");
    checkBounds(bytes, offset, length);
    this.value = StringCoding.decode(charsetName, bytes, offset, length);
}

/**
 * Constructs a new {@code String} by decoding the specified subarray of
 * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 * The length of the new {@code String} is a function of the charset, and
 * hence may not be equal to the length of the subarray.
 *
 * <p> This method always replaces malformed-input and unmappable-character
 * sequences with this charset's default replacement string.  The {@link
 * java.nio.charset.CharsetDecoder} class should be used when more control
 * over the decoding process is required.
 *
 * @param  bytes
 *         The bytes to be decoded into characters
 *
 * @param  offset
 *         The index of the first byte to decode
 *
 * @param  length
 *         The number of bytes to decode
 *
 * @param  charset
 *         The {@linkplain java.nio.charset.Charset charset} to be used to
 *         decode the {@code bytes}
 *
 * @throws  IndexOutOfBoundsException
 *          If the {@code offset} and {@code length} arguments index
 *          characters outside the bounds of the {@code bytes} array
 *
 * @since  1.6
 */
public String(byte bytes[], int offset, int length, Charset charset) {
    if (charset == null)
        throw new NullPointerException("charset");
    checkBounds(bytes, offset, length);
    this.value =  StringCoding.decode(charset, bytes, offset, length);
}

/**
 * Constructs a new {@code String} by decoding the specified array of bytes
 * using the specified {@linkplain java.nio.charset.Charset charset}.  The
 * length of the new {@code String} is a function of the charset, and hence
 * may not be equal to the length of the byte array.
 *
 * <p> The behavior of this constructor when the given bytes are not valid
 * in the given charset is unspecified.  The {@link
 * java.nio.charset.CharsetDecoder} class should be used when more control
 * over the decoding process is required.
 *
 * @param  bytes
 *         The bytes to be decoded into characters
 *
 * @param  charsetName
 *         The name of a supported {@linkplain java.nio.charset.Charset
 *         charset}
 *
 * @throws  UnsupportedEncodingException
 *          If the named charset is not supported
 *
 * @since  JDK1.1
 */
public String(byte bytes[], String charsetName)
        throws UnsupportedEncodingException {
    this(bytes, 0, bytes.length, charsetName);
}

/**
 * Constructs a new {@code String} by decoding the specified array of
 * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 * The length of the new {@code String} is a function of the charset, and
 * hence may not be equal to the length of the byte array.
 *
 * <p> This method always replaces malformed-input and unmappable-character
 * sequences with this charset's default replacement string.  The {@link
 * java.nio.charset.CharsetDecoder} class should be used when more control
 * over the decoding process is required.
 *
 * @param  bytes
 *         The bytes to be decoded into characters
 *
 * @param  charset
 *         The {@linkplain java.nio.charset.Charset charset} to be used to
 *         decode the {@code bytes}
 *
 * @since  1.6
 */
public String(byte bytes[], Charset charset) {
    this(bytes, 0, bytes.length, charset);
}

/**
 * Constructs a new {@code String} by decoding the specified subarray of
 * bytes using the platform's default charset.  The length of the new
 * {@code String} is a function of the charset, and hence may not be equal
 * to the length of the subarray.
 *
 * <p> The behavior of this constructor when the given bytes are not valid
 * in the default charset is unspecified.  The {@link
 * java.nio.charset.CharsetDecoder} class should be used when more control
 * over the decoding process is required.
 *
 * @param  bytes
 *         The bytes to be decoded into characters
 *
 * @param  offset
 *         The index of the first byte to decode
 *
 * @param  length
 *         The number of bytes to decode
 *
 * @throws  IndexOutOfBoundsException
 *          If the {@code offset} and the {@code length} arguments index
 *          characters outside the bounds of the {@code bytes} array
 *
 * @since  JDK1.1
 */
public String(byte bytes[], int offset, int length) {
    checkBounds(bytes, offset, length);
    this.value = StringCoding.decode(bytes, offset, length);
}

/**
 * Constructs a new {@code String} by decoding the specified array of bytes
 * using the platform's default charset.  The length of the new {@code
 * String} is a function of the charset, and hence may not be equal to the
 * length of the byte array.
 *
 * <p> The behavior of this constructor when the given bytes are not valid
 * in the default charset is unspecified.  The {@link
 * java.nio.charset.CharsetDecoder} class should be used when more control
 * over the decoding process is required.
 *
 * @param  bytes
 *         The bytes to be decoded into characters
 *
 * @since  JDK1.1
 */
public String(byte bytes[]) {
    this(bytes, 0, bytes.length);
}

关于字符串的长度,直接取得内部维护的字符数组 char[] 即可:

/**
 * Returns the length of this string.
 * The length is equal to the number of <a href="Character.html#unicode">Unicode
 * code units</a> in the string.
 *
 * @return  the length of the sequence of characters represented by this
 *          object.
 */
public int length() {
    return value.length;
}

/**
 * Returns {@code true} if, and only if, {@link #length()} is {@code 0}.
 *
 * @return {@code true} if {@link #length()} is {@code 0}, otherwise
 * {@code false}
 *
 * @since 1.6
 */
public boolean isEmpty() {
    return value.length == 0;
}

获取某个位置的字符。只会做一些简单的 index 边界检查:

/**
 * Returns the {@code char} value at the
 * specified index. An index ranges from {@code 0} to
 * {@code length() - 1}. The first {@code char} value of the sequence
 * is at index {@code 0}, the next at index {@code 1},
 * and so on, as for array indexing.
 *
 * <p>If the {@code char} value specified by the index is a
 * <a href="Character.html#unicode">surrogate</a>, the surrogate
 * value is returned.
 *
 * @param      index   the index of the {@code char} value.
 * @return     the {@code char} value at the specified index of this string.
 *             The first {@code char} value is at index {@code 0}.
 * @exception  IndexOutOfBoundsException  if the {@code index}
 *             argument is negative or not less than the length of this
 *             string.
 */
public char charAt(int index) {
    if ((index < 0) || (index >= value.length)) {
        throw new StringIndexOutOfBoundsException(index);
    }
    return value[index];
}

获取某个位置或位置之前的代码点。如果访问到的代码点对应两个字符,则会完整返回一个代码点;否则只返回一个字符对应的代码点。

之后再看看编码相关的知识。

/**
 * Returns the character (Unicode code point) at the specified
 * index. The index refers to {@code char} values
 * (Unicode code units) and ranges from {@code 0} to
 * {@link #length()}{@code  - 1}.
 *
 * <p> If the {@code char} value specified at the given index
 * is in the high-surrogate range, the following index is less
 * than the length of this {@code String}, and the
 * {@code char} value at the following index is in the
 * low-surrogate range, then the supplementary code point
 * corresponding to this surrogate pair is returned. Otherwise,
 * the {@code char} value at the given index is returned.
 *
 * @param      index the index to the {@code char} values
 * @return     the code point value of the character at the
 *             {@code index}
 * @exception  IndexOutOfBoundsException  if the {@code index}
 *             argument is negative or not less than the length of this
 *             string.
 * @since      1.5
 */
public int codePointAt(int index) {
    if ((index < 0) || (index >= value.length)) {
        throw new StringIndexOutOfBoundsException(index);
    }
    return Character.codePointAtImpl(value, index, value.length);
}

/**
 * Returns the character (Unicode code point) before the specified
 * index. The index refers to {@code char} values
 * (Unicode code units) and ranges from {@code 1} to {@link
 * CharSequence#length() length}.
 *
 * <p> If the {@code char} value at {@code (index - 1)}
 * is in the low-surrogate range, {@code (index - 2)} is not
 * negative, and the {@code char} value at {@code (index -
 * 2)} is in the high-surrogate range, then the
 * supplementary code point value of the surrogate pair is
 * returned. If the {@code char} value at {@code index -
 * 1} is an unpaired low-surrogate or a high-surrogate, the
 * surrogate value is returned.
 *
 * @param     index the index following the code point that should be returned
 * @return    the Unicode code point value before the given index.
 * @exception IndexOutOfBoundsException if the {@code index}
 *            argument is less than 1 or greater than the length
 *            of this string.
 * @since     1.5
 */
public int codePointBefore(int index) {
    int i = index - 1;
    if ((i < 0) || (i >= value.length)) {
        throw new StringIndexOutOfBoundsException(index);
    }
    return Character.codePointBeforeImpl(value, index, 0);
}

/**
 * Returns the number of Unicode code points in the specified text
 * range of this {@code String}. The text range begins at the
 * specified {@code beginIndex} and extends to the
 * {@code char} at index {@code endIndex - 1}. Thus the
 * length (in {@code char}s) of the text range is
 * {@code endIndex-beginIndex}. Unpaired surrogates within
 * the text range count as one code point each.
 *
 * @param beginIndex the index to the first {@code char} of
 * the text range.
 * @param endIndex the index after the last {@code char} of
 * the text range.
 * @return the number of Unicode code points in the specified text
 * range
 * @exception IndexOutOfBoundsException if the
 * {@code beginIndex} is negative, or {@code endIndex}
 * is larger than the length of this {@code String}, or
 * {@code beginIndex} is larger than {@code endIndex}.
 * @since  1.5
 */
public int codePointCount(int beginIndex, int endIndex) {
    if (beginIndex < 0 || endIndex > value.length || beginIndex > endIndex) {
        throw new IndexOutOfBoundsException();
    }
    return Character.codePointCountImpl(value, beginIndex, endIndex - beginIndex);
}

/**
 * Returns the index within this {@code String} that is
 * offset from the given {@code index} by
 * {@code codePointOffset} code points. Unpaired surrogates
 * within the text range given by {@code index} and
 * {@code codePointOffset} count as one code point each.
 *
 * @param index the index to be offset
 * @param codePointOffset the offset in code points
 * @return the index within this {@code String}
 * @exception IndexOutOfBoundsException if {@code index}
 *   is negative or larger then the length of this
 *   {@code String}, or if {@code codePointOffset} is positive
 *   and the substring starting with {@code index} has fewer
 *   than {@code codePointOffset} code points,
 *   or if {@code codePointOffset} is negative and the substring
 *   before {@code index} has fewer than the absolute value
 *   of {@code codePointOffset} code points.
 * @since 1.5
 */
public int offsetByCodePoints(int index, int codePointOffset) {
    if (index < 0 || index > value.length) {
        throw new IndexOutOfBoundsException();
    }
    return Character.offsetByCodePointsImpl(value, 0, value.length,
            index, codePointOffset);
}

以下两个函数将字符调用了 JVM 的 native 函数将字符复制到目标 char[] 中的指定位置下。一个函数不进行范围检查,另一个函数会进行范围检查。但范围检查仅针对 value,不针对目标 char[]。

/**
 * Copy characters from this string into dst starting at dstBegin.
 * This method doesn't perform any range checking.
 */
void getChars(char dst[], int dstBegin) {
    System.arraycopy(value, 0, dst, dstBegin, value.length);
}

/**
 * Copies characters from this string into the destination character
 * array.
 * <p>
 * The first character to be copied is at index {@code srcBegin};
 * the last character to be copied is at index {@code srcEnd-1}
 * (thus the total number of characters to be copied is
 * {@code srcEnd-srcBegin}). The characters are copied into the
 * subarray of {@code dst} starting at index {@code dstBegin}
 * and ending at index:
 * <blockquote><pre>
 *     dstBegin + (srcEnd-srcBegin) - 1
 * </pre></blockquote>
 *
 * @param      srcBegin   index of the first character in the string
 *                        to copy.
 * @param      srcEnd     index after the last character in the string
 *                        to copy.
 * @param      dst        the destination array.
 * @param      dstBegin   the start offset in the destination array.
 * @exception IndexOutOfBoundsException If any of the following
 *            is true:
 *            <ul><li>{@code srcBegin} is negative.
 *            <li>{@code srcBegin} is greater than {@code srcEnd}
 *            <li>{@code srcEnd} is greater than the length of this
 *                string
 *            <li>{@code dstBegin} is negative
 *            <li>{@code dstBegin+(srcEnd-srcBegin)} is larger than
 *                {@code dst.length}</ul>
 */
public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
    if (srcBegin < 0) {
        throw new StringIndexOutOfBoundsException(srcBegin);
    }
    if (srcEnd > value.length) {
        throw new StringIndexOutOfBoundsException(srcEnd);
    }
    if (srcBegin > srcEnd) {
        throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
    }
    System.arraycopy(value, srcBegin, dst, dstBegin, srcEnd - srcBegin);
}

以下函数将 value 数组中的字符进行指定的编码后,返回编码后的字节数组。

/**
 * Encodes this {@code String} into a sequence of bytes using the named
 * charset, storing the result into a new byte array.
 *
 * <p> The behavior of this method when this string cannot be encoded in
 * the given charset is unspecified.  The {@link
 * java.nio.charset.CharsetEncoder} class should be used when more control
 * over the encoding process is required.
 *
 * @param  charsetName
 *         The name of a supported {@linkplain java.nio.charset.Charset
 *         charset}
 *
 * @return  The resultant byte array
 *
 * @throws  UnsupportedEncodingException
 *          If the named charset is not supported
 *
 * @since  JDK1.1
 */
public byte[] getBytes(String charsetName)
        throws UnsupportedEncodingException {
    if (charsetName == null) throw new NullPointerException();
    return StringCoding.encode(charsetName, value, 0, value.length);
}

/**
 * Encodes this {@code String} into a sequence of bytes using the given
 * {@linkplain java.nio.charset.Charset charset}, storing the result into a
 * new byte array.
 *
 * <p> This method always replaces malformed-input and unmappable-character
 * sequences with this charset's default replacement byte array.  The
 * {@link java.nio.charset.CharsetEncoder} class should be used when more
 * control over the encoding process is required.
 *
 * @param  charset
 *         The {@linkplain java.nio.charset.Charset} to be used to encode
 *         the {@code String}
 *
 * @return  The resultant byte array
 *
 * @since  1.6
 */
public byte[] getBytes(Charset charset) {
    if (charset == null) throw new NullPointerException();
    return StringCoding.encode(charset, value, 0, value.length);
}

/**
 * Encodes this {@code String} into a sequence of bytes using the
 * platform's default charset, storing the result into a new byte array.
 *
 * <p> The behavior of this method when this string cannot be encoded in
 * the default charset is unspecified.  The {@link
 * java.nio.charset.CharsetEncoder} class should be used when more control
 * over the encoding process is required.
 *
 * @return  The resultant byte array
 *
 * @since      JDK1.1
 */
public byte[] getBytes() {
    return StringCoding.encode(value, 0, value.length);
}

字符串比较的实现。先将一个位置类型的字符串转换为 String 对象,再依次比较对象中 value 数组中的内容是否完全相同:(要求目标的数据类型也与 String 相同)

/**
 * Compares this string to the specified object.  The result is {@code
 * true} if and only if the argument is not {@code null} and is a {@code
 * String} object that represents the same sequence of characters as this
 * object.
 *
 * @param  anObject
 *         The object to compare this {@code String} against
 *
 * @return  {@code true} if the given object represents a {@code String}
 *          equivalent to this string, {@code false} otherwise
 *
 * @see  #compareTo(String)
 * @see  #equalsIgnoreCase(String)
 */
public boolean equals(Object anObject) {
    if (this == anObject) {
        return true;
    }
    if (anObject instanceof String) {
        String anotherString = (String)anObject;
        int n = value.length;
        if (n == anotherString.value.length) {
            char v1[] = value;
            char v2[] = anotherString.value;
            int i = 0;
            while (n-- != 0) {
                if (v1[i] != v2[i])
                    return false;
                i++;
            }
            return true;
        }
    }
    return false;
}

另外,还有与字符序列进行比较的函数,实现方式与 equals() 类似,但比较目标不是 String 对象。其中,先是实现了一个未同步版本的比较函数,对于 StringBuffer 对象,需要先对对象进行同步之后,才能调用未同步版本的比较函数:

/**
 * Compares this string to the specified {@code StringBuffer}.  The result
 * is {@code true} if and only if this {@code String} represents the same
 * sequence of characters as the specified {@code StringBuffer}. This method
 * synchronizes on the {@code StringBuffer}.
 *
 * @param  sb
 *         The {@code StringBuffer} to compare this {@code String} against
 *
 * @return  {@code true} if this {@code String} represents the same
 *          sequence of characters as the specified {@code StringBuffer},
 *          {@code false} otherwise
 *
 * @since  1.4
 */
public boolean contentEquals(StringBuffer sb) {
    return contentEquals((CharSequence)sb);
}

private boolean nonSyncContentEquals(AbstractStringBuilder sb) {
    char v1[] = value;
    char v2[] = sb.getValue();
    int n = v1.length;
    if (n != sb.length()) {
        return false;
    }
    for (int i = 0; i < n; i++) {
        if (v1[i] != v2[i]) {
            return false;
        }
    }
    return true;
}

/**
 * Compares this string to the specified {@code CharSequence}.  The
 * result is {@code true} if and only if this {@code String} represents the
 * same sequence of char values as the specified sequence. Note that if the
 * {@code CharSequence} is a {@code StringBuffer} then the method
 * synchronizes on it.
 *
 * @param  cs
 *         The sequence to compare this {@code String} against
 *
 * @return  {@code true} if this {@code String} represents the same
 *          sequence of char values as the specified sequence, {@code
 *          false} otherwise
 *
 * @since  1.5
 */
public boolean contentEquals(CharSequence cs) {
    // Argument is a StringBuffer, StringBuilder
    if (cs instanceof AbstractStringBuilder) {
        if (cs instanceof StringBuffer) {
            synchronized(cs) {
                return nonSyncContentEquals((AbstractStringBuilder)cs);
            }
        } else {
            return nonSyncContentEquals((AbstractStringBuilder)cs);
        }
    }
    // Argument is a String
    if (cs instanceof String) {
        return equals(cs);
    }
    // Argument is a generic CharSequence
    char v1[] = value;
    int n = v1.length;
    if (n != cs.length()) {
        return false;
    }
    for (int i = 0; i < n; i++) {
        if (v1[i] != cs.charAt(i)) {
            return false;
        }
    }
    return true;
}

下面的函数以大小写不敏感的方式对比两个字符串。在具体实现中,将每个字符都转成大写以后再进行比较:

/**
 * Compares this {@code String} to another {@code String}, ignoring case
 * considerations.  Two strings are considered equal ignoring case if they
 * are of the same length and corresponding characters in the two strings
 * are equal ignoring case.
 *
 * <p> Two characters {@code c1} and {@code c2} are considered the same
 * ignoring case if at least one of the following is true:
 * <ul>
 *   <li> The two characters are the same (as compared by the
 *        {@code ==} operator)
 *   <li> Applying the method {@link
 *        java.lang.Character#toUpperCase(char)} to each character
 *        produces the same result
 *   <li> Applying the method {@link
 *        java.lang.Character#toLowerCase(char)} to each character
 *        produces the same result
 * </ul>
 *
 * @param  anotherString
 *         The {@code String} to compare this {@code String} against
 *
 * @return  {@code true} if the argument is not {@code null} and it
 *          represents an equivalent {@code String} ignoring case; {@code
 *          false} otherwise
 *
 * @see  #equals(Object)
 */
public boolean equalsIgnoreCase(String anotherString) {
    return (this == anotherString) ? true
        : (anotherString != null)
        && (anotherString.value.length == value.length)
        && regionMatches(true, 0, anotherString, 0, value.length);
}

/**
 * Tests if two string regions are equal.
 * <p>
 * A substring of this {@code String} object is compared to a substring
 * of the argument {@code other}. The result is {@code true} if these
 * substrings represent character sequences that are the same, ignoring
 * case if and only if {@code ignoreCase} is true. The substring of
 * this {@code String} object to be compared begins at index
 * {@code toffset} and has length {@code len}. The substring of
 * {@code other} to be compared begins at index {@code ooffset} and
 * has length {@code len}. The result is {@code false} if and only if
 * at least one of the following is true:
 * <ul><li>{@code toffset} is negative.
 * <li>{@code ooffset} is negative.
 * <li>{@code toffset+len} is greater than the length of this
 * {@code String} object.
 * <li>{@code ooffset+len} is greater than the length of the other
 * argument.
 * <li>{@code ignoreCase} is {@code false} and there is some nonnegative
 * integer <i>k</i> less than {@code len} such that:
 * <blockquote><pre>
 * this.charAt(toffset+k) != other.charAt(ooffset+k)
 * </pre></blockquote>
 * <li>{@code ignoreCase} is {@code true} and there is some nonnegative
 * integer <i>k</i> less than {@code len} such that:
 * <blockquote><pre>
 * Character.toLowerCase(this.charAt(toffset+k)) !=
 Character.toLowerCase(other.charAt(ooffset+k))
 * </pre></blockquote>
 * and:
 * <blockquote><pre>
 * Character.toUpperCase(this.charAt(toffset+k)) !=
 *         Character.toUpperCase(other.charAt(ooffset+k))
 * </pre></blockquote>
 * </ul>
 *
 * @param   ignoreCase   if {@code true}, ignore case when comparing
 *                       characters.
 * @param   toffset      the starting offset of the subregion in this
 *                       string.
 * @param   other        the string argument.
 * @param   ooffset      the starting offset of the subregion in the string
 *                       argument.
 * @param   len          the number of characters to compare.
 * @return  {@code true} if the specified subregion of this string
 *          matches the specified subregion of the string argument;
 *          {@code false} otherwise. Whether the matching is exact
 *          or case insensitive depends on the {@code ignoreCase}
 *          argument.
 */
public boolean regionMatches(boolean ignoreCase, int toffset,
        String other, int ooffset, int len) {
    char ta[] = value;
    int to = toffset;
    char pa[] = other.value;
    int po = ooffset;
    // Note: toffset, ooffset, or len might be near -1>>>1.
    if ((ooffset < 0) || (toffset < 0)
            || (toffset > (long)value.length - len)
            || (ooffset > (long)other.value.length - len)) {
        return false;
    }
    while (len-- > 0) {
        char c1 = ta[to++];
        char c2 = pa[po++];
        if (c1 == c2) {
            continue;
        }
        if (ignoreCase) {
            // If characters don't match but case may be ignored,
            // try converting both characters to uppercase.
            // If the results match, then the comparison scan should
            // continue.
            char u1 = Character.toUpperCase(c1);
            char u2 = Character.toUpperCase(c2);
            if (u1 == u2) {
                continue;
            }
            // Unfortunately, conversion to uppercase does not work properly
            // for the Georgian alphabet, which has strange rules about case
            // conversion.  So we need to make one last check before
            // exiting.
            if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
                continue;
            }
        }
        return false;
    }
    return true;
}

以下函数基于 Unicode 编码值对字符串进行比较。通过返回负数、0、整数来表示两个字符串之间的大小关系。返回的具体数值是两个字符串第一个不相等字符的 Unicode 编码值之差。

/**
 * Compares two strings lexicographically.
 * The comparison is based on the Unicode value of each character in
 * the strings. The character sequence represented by this
 * {@code String} object is compared lexicographically to the
 * character sequence represented by the argument string. The result is
 * a negative integer if this {@code String} object
 * lexicographically precedes the argument string. The result is a
 * positive integer if this {@code String} object lexicographically
 * follows the argument string. The result is zero if the strings
 * are equal; {@code compareTo} returns {@code 0} exactly when
 * the {@link #equals(Object)} method would return {@code true}.
 * <p>
 * This is the definition of lexicographic ordering. If two strings are
 * different, then either they have different characters at some index
 * that is a valid index for both strings, or their lengths are different,
 * or both. If they have different characters at one or more index
 * positions, let <i>k</i> be the smallest such index; then the string
 * whose character at position <i>k</i> has the smaller value, as
 * determined by using the &lt; operator, lexicographically precedes the
 * other string. In this case, {@code compareTo} returns the
 * difference of the two character values at position {@code k} in
 * the two string -- that is, the value:
 * <blockquote><pre>
 * this.charAt(k)-anotherString.charAt(k)
 * </pre></blockquote>
 * If there is no index position at which they differ, then the shorter
 * string lexicographically precedes the longer string. In this case,
 * {@code compareTo} returns the difference of the lengths of the
 * strings -- that is, the value:
 * <blockquote><pre>
 * this.length()-anotherString.length()
 * </pre></blockquote>
 *
 * @param   anotherString   the {@code String} to be compared.
 * @return  the value {@code 0} if the argument string is equal to
 *          this string; a value less than {@code 0} if this string
 *          is lexicographically less than the string argument; and a
 *          value greater than {@code 0} if this string is
 *          lexicographically greater than the string argument.
 */
public int compareTo(String anotherString) {
    int len1 = value.length;
    int len2 = anotherString.value.length;
    int lim = Math.min(len1, len2);
    char v1[] = value;
    char v2[] = anotherString.value;

    int k = 0;
    while (k < lim) {
        char c1 = v1[k];
        char c2 = v2[k];
        if (c1 != c2) {
            return c1 - c2;
        }
        k++;
    }
    return len1 - len2;
}

以下函数用于匹配字符串的前缀和后缀。默认从头开始匹配,并且会对匹配 pattern 的范围进行检查。

/**
 * Tests if the substring of this string beginning at the
 * specified index starts with the specified prefix.
 *
 * @param   prefix    the prefix.
 * @param   toffset   where to begin looking in this string.
 * @return  {@code true} if the character sequence represented by the
 *          argument is a prefix of the substring of this object starting
 *          at index {@code toffset}; {@code false} otherwise.
 *          The result is {@code false} if {@code toffset} is
 *          negative or greater than the length of this
 *          {@code String} object; otherwise the result is the same
 *          as the result of the expression
 *          <pre>
 *          this.substring(toffset).startsWith(prefix)
 *          </pre>
 */
public boolean startsWith(String prefix, int toffset) {
    char ta[] = value;
    int to = toffset;
    char pa[] = prefix.value;
    int po = 0;
    int pc = prefix.value.length;
    // Note: toffset might be near -1>>>1.
    if ((toffset < 0) || (toffset > value.length - pc)) {
        return false;
    }
    while (--pc >= 0) {
        if (ta[to++] != pa[po++]) {
            return false;
        }
    }
    return true;
}

/**
 * Tests if this string starts with the specified prefix.
 *
 * @param   prefix   the prefix.
 * @return  {@code true} if the character sequence represented by the
 *          argument is a prefix of the character sequence represented by
 *          this string; {@code false} otherwise.
 *          Note also that {@code true} will be returned if the
 *          argument is an empty string or is equal to this
 *          {@code String} object as determined by the
 *          {@link #equals(Object)} method.
 * @since   1. 0
 */
public boolean startsWith(String prefix) {
    return startsWith(prefix, 0);
}

/**
 * Tests if this string ends with the specified suffix.
 *
 * @param   suffix   the suffix.
 * @return  {@code true} if the character sequence represented by the
 *          argument is a suffix of the character sequence represented by
 *          this object; {@code false} otherwise. Note that the
 *          result will be {@code true} if the argument is the
 *          empty string or is equal to this {@code String} object
 *          as determined by the {@link #equals(Object)} method.
 */
public boolean endsWith(String suffix) {
    return startsWith(suffix, value.length - suffix.value.length);
}

以下函数用于计算 String 的 hash code。可以看到是利用了每个字符进行计算,并且只会计算一次。内容相同的字符串,hash code 应该也是相同的。

/**
 * Returns a hash code for this string. The hash code for a
 * {@code String} object is computed as
 * <blockquote><pre>
 * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
 * </pre></blockquote>
 * using {@code int} arithmetic, where {@code s[i]} is the
 * <i>i</i>th character of the string, {@code n} is the length of
 * the string, and {@code ^} indicates exponentiation.
 * (The hash value of the empty string is zero.)
 *
 * @return  a hash code value for this object.
 */
public int hashCode() {
    int h = hash;
    if (h == 0 && value.length > 0) {
        char val[] = value;

        for (int i = 0; i < value.length; i++) {
            h = 31 * h + val[i];
        }
        hash = h;
    }
    return h;
}

以下函数用于比较某个字符第一次出现或最后一次出现的位置。参与比较的是一个 int 类型的代码点,因此要判断这个代码点对应于第一个字符还是两个字符 - 如果对应两个字符,那么要对高低位分别做比较:

/**
 * Returns the index within this string of the first occurrence of
 * the specified character. If a character with value
 * {@code ch} occurs in the character sequence represented by
 * this {@code String} object, then the index (in Unicode
 * code units) of the first such occurrence is returned. For
 * values of {@code ch} in the range from 0 to 0xFFFF
 * (inclusive), this is the smallest value <i>k</i> such that:
 * <blockquote><pre>
 * this.charAt(<i>k</i>) == ch
 * </pre></blockquote>
 * is true. For other values of {@code ch}, it is the
 * smallest value <i>k</i> such that:
 * <blockquote><pre>
 * this.codePointAt(<i>k</i>) == ch
 * </pre></blockquote>
 * is true. In either case, if no such character occurs in this
 * string, then {@code -1} is returned.
 *
 * @param   ch   a character (Unicode code point).
 * @return  the index of the first occurrence of the character in the
 *          character sequence represented by this object, or
 *          {@code -1} if the character does not occur.
 */
public int indexOf(int ch) {
    return indexOf(ch, 0);
}

/**
 * Returns the index within this string of the first occurrence of the
 * specified character, starting the search at the specified index.
 * <p>
 * If a character with value {@code ch} occurs in the
 * character sequence represented by this {@code String}
 * object at an index no smaller than {@code fromIndex}, then
 * the index of the first such occurrence is returned. For values
 * of {@code ch} in the range from 0 to 0xFFFF (inclusive),
 * this is the smallest value <i>k</i> such that:
 * <blockquote><pre>
 * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
 * </pre></blockquote>
 * is true. For other values of {@code ch}, it is the
 * smallest value <i>k</i> such that:
 * <blockquote><pre>
 * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
 * </pre></blockquote>
 * is true. In either case, if no such character occurs in this
 * string at or after position {@code fromIndex}, then
 * {@code -1} is returned.
 *
 * <p>
 * There is no restriction on the value of {@code fromIndex}. If it
 * is negative, it has the same effect as if it were zero: this entire
 * string may be searched. If it is greater than the length of this
 * string, it has the same effect as if it were equal to the length of
 * this string: {@code -1} is returned.
 *
 * <p>All indices are specified in {@code char} values
 * (Unicode code units).
 *
 * @param   ch          a character (Unicode code point).
 * @param   fromIndex   the index to start the search from.
 * @return  the index of the first occurrence of the character in the
 *          character sequence represented by this object that is greater
 *          than or equal to {@code fromIndex}, or {@code -1}
 *          if the character does not occur.
 */
public int indexOf(int ch, int fromIndex) {
    final int max = value.length;
    if (fromIndex < 0) {
        fromIndex = 0;
    } else if (fromIndex >= max) {
        // Note: fromIndex might be near -1>>>1.
        return -1;
    }

    if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
        // handle most cases here (ch is a BMP code point or a
        // negative value (invalid code point))
        final char[] value = this.value;
        for (int i = fromIndex; i < max; i++) {
            if (value[i] == ch) {
                return i;
            }
        }
        return -1;
    } else {
        return indexOfSupplementary(ch, fromIndex);
    }
}

/**
 * Handles (rare) calls of indexOf with a supplementary character.
 */
private int indexOfSupplementary(int ch, int fromIndex) {
    if (Character.isValidCodePoint(ch)) {
        final char[] value = this.value;
        final char hi = Character.highSurrogate(ch);
        final char lo = Character.lowSurrogate(ch);
        final int max = value.length - 1;
        for (int i = fromIndex; i < max; i++) {
            if (value[i] == hi && value[i + 1] == lo) {
                return i;
            }
        }
    }
    return -1;
}
/**
 * Returns the index within this string of the last occurrence of
 * the specified character. For values of {@code ch} in the
 * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
 * units) returned is the largest value <i>k</i> such that:
 * <blockquote><pre>
 * this.charAt(<i>k</i>) == ch
 * </pre></blockquote>
 * is true. For other values of {@code ch}, it is the
 * largest value <i>k</i> such that:
 * <blockquote><pre>
 * this.codePointAt(<i>k</i>) == ch
 * </pre></blockquote>
 * is true.  In either case, if no such character occurs in this
 * string, then {@code -1} is returned.  The
 * {@code String} is searched backwards starting at the last
 * character.
 *
 * @param   ch   a character (Unicode code point).
 * @return  the index of the last occurrence of the character in the
 *          character sequence represented by this object, or
 *          {@code -1} if the character does not occur.
 */
public int lastIndexOf(int ch) {
    return lastIndexOf(ch, value.length - 1);
}

/**
 * Returns the index within this string of the last occurrence of
 * the specified character, searching backward starting at the
 * specified index. For values of {@code ch} in the range
 * from 0 to 0xFFFF (inclusive), the index returned is the largest
 * value <i>k</i> such that:
 * <blockquote><pre>
 * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
 * </pre></blockquote>
 * is true. For other values of {@code ch}, it is the
 * largest value <i>k</i> such that:
 * <blockquote><pre>
 * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
 * </pre></blockquote>
 * is true. In either case, if no such character occurs in this
 * string at or before position {@code fromIndex}, then
 * {@code -1} is returned.
 *
 * <p>All indices are specified in {@code char} values
 * (Unicode code units).
 *
 * @param   ch          a character (Unicode code point).
 * @param   fromIndex   the index to start the search from. There is no
 *          restriction on the value of {@code fromIndex}. If it is
 *          greater than or equal to the length of this string, it has
 *          the same effect as if it were equal to one less than the
 *          length of this string: this entire string may be searched.
 *          If it is negative, it has the same effect as if it were -1:
 *          -1 is returned.
 * @return  the index of the last occurrence of the character in the
 *          character sequence represented by this object that is less
 *          than or equal to {@code fromIndex}, or {@code -1}
 *          if the character does not occur before that point.
 */
public int lastIndexOf(int ch, int fromIndex) {
    if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
        // handle most cases here (ch is a BMP code point or a
        // negative value (invalid code point))
        final char[] value = this.value;
        int i = Math.min(fromIndex, value.length - 1);
        for (; i >= 0; i--) {
            if (value[i] == ch) {
                return i;
            }
        }
        return -1;
    } else {
        return lastIndexOfSupplementary(ch, fromIndex);
    }
}

/**
 * Handles (rare) calls of lastIndexOf with a supplementary character.
 */
private int lastIndexOfSupplementary(int ch, int fromIndex) {
    if (Character.isValidCodePoint(ch)) {
        final char[] value = this.value;
        char hi = Character.highSurrogate(ch);
        char lo = Character.lowSurrogate(ch);
        int i = Math.min(fromIndex, value.length - 2);
        for (; i >= 0; i--) {
            if (value[i] == hi && value[i + 1] == lo) {
                return i;
            }
        }
    }
    return -1;
}

以下函数用于比较子串第一次或最后一次出现的位置。首先进行范围检查,检查完毕后,开始寻找第一个匹配的字符;找到匹配字符后,再匹配之后的所有字符。

/**
 * Returns the index within this string of the first occurrence of the
 * specified substring.
 *
 * <p>The returned index is the smallest value <i>k</i> for which:
 * <blockquote><pre>
 * this.startsWith(str, <i>k</i>)
 * </pre></blockquote>
 * If no such value of <i>k</i> exists, then {@code -1} is returned.
 *
 * @param   str   the substring to search for.
 * @return  the index of the first occurrence of the specified substring,
 *          or {@code -1} if there is no such occurrence.
 */
public int indexOf(String str) {
    return indexOf(str, 0);
}

/**
 * Returns the index within this string of the first occurrence of the
 * specified substring, starting at the specified index.
 *
 * <p>The returned index is the smallest value <i>k</i> for which:
 * <blockquote><pre>
 * <i>k</i> &gt;= fromIndex {@code &&} this.startsWith(str, <i>k</i>)
 * </pre></blockquote>
 * If no such value of <i>k</i> exists, then {@code -1} is returned.
 *
 * @param   str         the substring to search for.
 * @param   fromIndex   the index from which to start the search.
 * @return  the index of the first occurrence of the specified substring,
 *          starting at the specified index,
 *          or {@code -1} if there is no such occurrence.
 */
public int indexOf(String str, int fromIndex) {
    return indexOf(value, 0, value.length,
            str.value, 0, str.value.length, fromIndex);
}

/**
 * Code shared by String and AbstractStringBuilder to do searches. The
 * source is the character array being searched, and the target
 * is the string being searched for.
 *
 * @param   source       the characters being searched.
 * @param   sourceOffset offset of the source string.
 * @param   sourceCount  count of the source string.
 * @param   target       the characters being searched for.
 * @param   fromIndex    the index to begin searching from.
 */
static int indexOf(char[] source, int sourceOffset, int sourceCount,
        String target, int fromIndex) {
    return indexOf(source, sourceOffset, sourceCount,
                    target.value, 0, target.value.length,
                    fromIndex);
}

/**
 * Code shared by String and StringBuffer to do searches. The
 * source is the character array being searched, and the target
 * is the string being searched for.
 *
 * @param   source       the characters being searched.
 * @param   sourceOffset offset of the source string.
 * @param   sourceCount  count of the source string.
 * @param   target       the characters being searched for.
 * @param   targetOffset offset of the target string.
 * @param   targetCount  count of the target string.
 * @param   fromIndex    the index to begin searching from.
 */
static int indexOf(char[] source, int sourceOffset, int sourceCount,
        char[] target, int targetOffset, int targetCount,
        int fromIndex) {
    if (fromIndex >= sourceCount) {
        return (targetCount == 0 ? sourceCount : -1);
    }
    if (fromIndex < 0) {
        fromIndex = 0;
    }
    if (targetCount == 0) {
        return fromIndex;
    }

    char first = target[targetOffset];
    int max = sourceOffset + (sourceCount - targetCount);

    for (int i = sourceOffset + fromIndex; i <= max; i++) {
        /* Look for first character. */
        if (source[i] != first) {
            while (++i <= max && source[i] != first);
        }

        /* Found first character, now look at the rest of v2 */
        if (i <= max) {
            int j = i + 1;
            int end = j + targetCount - 1;
            for (int k = targetOffset + 1; j < end && source[j]
                    == target[k]; j++, k++);

            if (j == end) {
                /* Found whole string. */
                return i - sourceOffset;
            }
        }
    }
    return -1;
}
/**
 * Returns the index within this string of the last occurrence of the
 * specified substring.  The last occurrence of the empty string ""
 * is considered to occur at the index value {@code this.length()}.
 *
 * <p>The returned index is the largest value <i>k</i> for which:
 * <blockquote><pre>
 * this.startsWith(str, <i>k</i>)
 * </pre></blockquote>
 * If no such value of <i>k</i> exists, then {@code -1} is returned.
 *
 * @param   str   the substring to search for.
 * @return  the index of the last occurrence of the specified substring,
 *          or {@code -1} if there is no such occurrence.
 */
public int lastIndexOf(String str) {
    return lastIndexOf(str, value.length);
}

/**
 * Returns the index within this string of the last occurrence of the
 * specified substring, searching backward starting at the specified index.
 *
 * <p>The returned index is the largest value <i>k</i> for which:
 * <blockquote><pre>
 * <i>k</i> {@code <=} fromIndex {@code &&} this.startsWith(str, <i>k</i>)
 * </pre></blockquote>
 * If no such value of <i>k</i> exists, then {@code -1} is returned.
 *
 * @param   str         the substring to search for.
 * @param   fromIndex   the index to start the search from.
 * @return  the index of the last occurrence of the specified substring,
 *          searching backward from the specified index,
 *          or {@code -1} if there is no such occurrence.
 */
public int lastIndexOf(String str, int fromIndex) {
    return lastIndexOf(value, 0, value.length,
            str.value, 0, str.value.length, fromIndex);
}

/**
 * Code shared by String and AbstractStringBuilder to do searches. The
 * source is the character array being searched, and the target
 * is the string being searched for.
 *
 * @param   source       the characters being searched.
 * @param   sourceOffset offset of the source string.
 * @param   sourceCount  count of the source string.
 * @param   target       the characters being searched for.
 * @param   fromIndex    the index to begin searching from.
 */
static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
        String target, int fromIndex) {
    return lastIndexOf(source, sourceOffset, sourceCount,
                    target.value, 0, target.value.length,
                    fromIndex);
}

/**
 * Code shared by String and StringBuffer to do searches. The
 * source is the character array being searched, and the target
 * is the string being searched for.
 *
 * @param   source       the characters being searched.
 * @param   sourceOffset offset of the source string.
 * @param   sourceCount  count of the source string.
 * @param   target       the characters being searched for.
 * @param   targetOffset offset of the target string.
 * @param   targetCount  count of the target string.
 * @param   fromIndex    the index to begin searching from.
 */
static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
        char[] target, int targetOffset, int targetCount,
        int fromIndex) {
    /*
     * Check arguments; return immediately where possible. For
     * consistency, don't check for null str.
     */
    int rightIndex = sourceCount - targetCount;
    if (fromIndex < 0) {
        return -1;
    }
    if (fromIndex > rightIndex) {
        fromIndex = rightIndex;
    }
    /* Empty string always matches. */
    if (targetCount == 0) {
        return fromIndex;
    }

    int strLastIndex = targetOffset + targetCount - 1;
    char strLastChar = target[strLastIndex];
    int min = sourceOffset + targetCount - 1;
    int i = min + fromIndex;

startSearchForLastChar:
    while (true) {
        while (i >= min && source[i] != strLastChar) {
            i--;
        }
        if (i < min) {
            return -1;
        }
        int j = i - 1;
        int start = j - (targetCount - 1);
        int k = strLastIndex - 1;

        while (j > start) {
            if (source[j--] != target[k--]) {
                i--;
                continue startSearchForLastChar;
            }
        }
        return start - sourceOffset + 1;
    }
}

此处发现了 Java 中特有的带标号的 continue 和 break 用法。对于不带标号的 continue 和 break,分别代表结束或跳出当前循环;而对于带有标号的 continue 或 break,表示结束或跳出标号所指示的那个循环。


以下函数根据起始或结束位置截取子字符串:

/**
 * Returns a string that is a substring of this string. The
 * substring begins with the character at the specified index and
 * extends to the end of this string. <p>
 * Examples:
 * <blockquote><pre>
 * "unhappy".substring(2) returns "happy"
 * "Harbison".substring(3) returns "bison"
 * "emptiness".substring(9) returns "" (an empty string)
 * </pre></blockquote>
 *
 * @param      beginIndex   the beginning index, inclusive.
 * @return     the specified substring.
 * @exception  IndexOutOfBoundsException  if
 *             {@code beginIndex} is negative or larger than the
 *             length of this {@code String} object.
 */
public String substring(int beginIndex) {
    if (beginIndex < 0) {
        throw new StringIndexOutOfBoundsException(beginIndex);
    }
    int subLen = value.length - beginIndex;
    if (subLen < 0) {
        throw new StringIndexOutOfBoundsException(subLen);
    }
    return (beginIndex == 0) ? this : new String(value, beginIndex, subLen);
}

/**
 * Returns a string that is a substring of this string. The
 * substring begins at the specified {@code beginIndex} and
 * extends to the character at index {@code endIndex - 1}.
 * Thus the length of the substring is {@code endIndex-beginIndex}.
 * <p>
 * Examples:
 * <blockquote><pre>
 * "hamburger".substring(4, 8) returns "urge"
 * "smiles".substring(1, 5) returns "mile"
 * </pre></blockquote>
 *
 * @param      beginIndex   the beginning index, inclusive.
 * @param      endIndex     the ending index, exclusive.
 * @return     the specified substring.
 * @exception  IndexOutOfBoundsException  if the
 *             {@code beginIndex} is negative, or
 *             {@code endIndex} is larger than the length of
 *             this {@code String} object, or
 *             {@code beginIndex} is larger than
 *             {@code endIndex}.
 */
public String substring(int beginIndex, int endIndex) {
    if (beginIndex < 0) {
        throw new StringIndexOutOfBoundsException(beginIndex);
    }
    if (endIndex > value.length) {
        throw new StringIndexOutOfBoundsException(endIndex);
    }
    int subLen = endIndex - beginIndex;
    if (subLen < 0) {
        throw new StringIndexOutOfBoundsException(subLen);
    }
    return ((beginIndex == 0) && (endIndex == value.length)) ? this
            : new String(value, beginIndex, subLen);
}

/**
 * Returns a character sequence that is a subsequence of this sequence.
 *
 * <p> An invocation of this method of the form
 *
 * <blockquote><pre>
 * str.subSequence(begin,&nbsp;end)</pre></blockquote>
 *
 * behaves in exactly the same way as the invocation
 *
 * <blockquote><pre>
 * str.substring(begin,&nbsp;end)</pre></blockquote>
 *
 * @apiNote
 * This method is defined so that the {@code String} class can implement
 * the {@link CharSequence} interface.
 *
 * @param   beginIndex   the begin index, inclusive.
 * @param   endIndex     the end index, exclusive.
 * @return  the specified subsequence.
 *
 * @throws  IndexOutOfBoundsException
 *          if {@code beginIndex} or {@code endIndex} is negative,
 *          if {@code endIndex} is greater than {@code length()},
 *          or if {@code beginIndex} is greater than {@code endIndex}
 *
 * @since 1.4
 * @spec JSR-51
 */
public CharSequence subSequence(int beginIndex, int endIndex) {
    return this.substring(beginIndex, endIndex);
}

字符串拼接实现。开辟一个长度更长的空间,然后将待拼接的字符串复制进去。最终用这个 char[] 构造一个新的 String 对象。

/**
 * Concatenates the specified string to the end of this string.
 * <p>
 * If the length of the argument string is {@code 0}, then this
 * {@code String} object is returned. Otherwise, a
 * {@code String} object is returned that represents a character
 * sequence that is the concatenation of the character sequence
 * represented by this {@code String} object and the character
 * sequence represented by the argument string.<p>
 * Examples:
 * <blockquote><pre>
 * "cares".concat("s") returns "caress"
 * "to".concat("get").concat("her") returns "together"
 * </pre></blockquote>
 *
 * @param   str   the {@code String} that is concatenated to the end
 *                of this {@code String}.
 * @return  a string that represents the concatenation of this object's
 *          characters followed by the string argument's characters.
 */
public String concat(String str) {
    int otherLen = str.length();
    if (otherLen == 0) {
        return this;
    }
    int len = value.length;
    char buf[] = Arrays.copyOf(value, len + otherLen);
    str.getChars(buf, len);
    return new String(buf, true);
}

以下函数将字符串中所有的特定字符替换为另一个特定字符。在找到第一个匹配字符之后,开辟新的 char[] 空间,将原字符串中的内容依次拷贝到新字符串中,同时替换需要被替换的字符。最终用新的 char[] 构造 String 对象;如果一次替换都没有发生,那么直接返回当前对象的引用。

/**
 * Returns a string resulting from replacing all occurrences of
 * {@code oldChar} in this string with {@code newChar}.
 * <p>
 * If the character {@code oldChar} does not occur in the
 * character sequence represented by this {@code String} object,
 * then a reference to this {@code String} object is returned.
 * Otherwise, a {@code String} object is returned that
 * represents a character sequence identical to the character sequence
 * represented by this {@code String} object, except that every
 * occurrence of {@code oldChar} is replaced by an occurrence
 * of {@code newChar}.
 * <p>
 * Examples:
 * <blockquote><pre>
 * "mesquite in your cellar".replace('e', 'o')
 *         returns "mosquito in your collar"
 * "the war of baronets".replace('r', 'y')
 *         returns "the way of bayonets"
 * "sparring with a purple porpoise".replace('p', 't')
 *         returns "starring with a turtle tortoise"
 * "JonL".replace('q', 'x') returns "JonL" (no change)
 * </pre></blockquote>
 *
 * @param   oldChar   the old character.
 * @param   newChar   the new character.
 * @return  a string derived from this string by replacing every
 *          occurrence of {@code oldChar} with {@code newChar}.
 */
public String replace(char oldChar, char newChar) {
    if (oldChar != newChar) {
        int len = value.length;
        int i = -1;
        char[] val = value; /* avoid getfield opcode */

        while (++i < len) {
            if (val[i] == oldChar) {
                break;
            }
        }
        if (i < len) {
            char buf[] = new char[len];
            for (int j = 0; j < i; j++) {
                buf[j] = val[j];
            }
            while (i < len) {
                char c = val[i];
                buf[i] = (c == oldChar) ? newChar : c;
                i++;
            }
            return new String(buf, true);
        }
    }
    return this;
}

以下函数将一些字符串用分隔符拼接起来:

/**
 * Returns a new String composed of copies of the
 * {@code CharSequence elements} joined together with a copy of
 * the specified {@code delimiter}.
 *
 * <blockquote>For example,
 * <pre>{@code
 *     String message = String.join("-", "Java", "is", "cool");
 *     // message returned is: "Java-is-cool"
 * }</pre></blockquote>
 *
 * Note that if an element is null, then {@code "null"} is added.
 *
 * @param  delimiter the delimiter that separates each element
 * @param  elements the elements to join together.
 *
 * @return a new {@code String} that is composed of the {@code elements}
 *         separated by the {@code delimiter}
 *
 * @throws NullPointerException If {@code delimiter} or {@code elements}
 *         is {@code null}
 *
 * @see java.util.StringJoiner
 * @since 1.8
 */
public static String join(CharSequence delimiter, CharSequence... elements) {
    Objects.requireNonNull(delimiter);
    Objects.requireNonNull(elements);
    // Number of elements not likely worth Arrays.stream overhead.
    StringJoiner joiner = new StringJoiner(delimiter);
    for (CharSequence cs: elements) {
        joiner.add(cs);
    }
    return joiner.toString();
}

/**
 * Returns a new {@code String} composed of copies of the
 * {@code CharSequence elements} joined together with a copy of the
 * specified {@code delimiter}.
 *
 * <blockquote>For example,
 * <pre>{@code
 *     List<String> strings = new LinkedList<>();
 *     strings.add("Java");strings.add("is");
 *     strings.add("cool");
 *     String message = String.join(" ", strings);
 *     //message returned is: "Java is cool"
 *
 *     Set<String> strings = new LinkedHashSet<>();
 *     strings.add("Java"); strings.add("is");
 *     strings.add("very"); strings.add("cool");
 *     String message = String.join("-", strings);
 *     //message returned is: "Java-is-very-cool"
 * }</pre></blockquote>
 *
 * Note that if an individual element is {@code null}, then {@code "null"} is added.
 *
 * @param  delimiter a sequence of characters that is used to separate each
 *         of the {@code elements} in the resulting {@code String}
 * @param  elements an {@code Iterable} that will have its {@code elements}
 *         joined together.
 *
 * @return a new {@code String} that is composed from the {@code elements}
 *         argument
 *
 * @throws NullPointerException If {@code delimiter} or {@code elements}
 *         is {@code null}
 *
 * @see    #join(CharSequence,CharSequence...)
 * @see    java.util.StringJoiner
 * @since 1.8
 */
public static String join(CharSequence delimiter,
        Iterable<? extends CharSequence> elements) {
    Objects.requireNonNull(delimiter);
    Objects.requireNonNull(elements);
    StringJoiner joiner = new StringJoiner(delimiter);
    for (CharSequence cs: elements) {
        joiner.add(cs);
    }
    return joiner.toString();
}

以下函数返回一个与输入字符串 value 相同的新字符串,但是删除了前导和后缀的空格字符:

/**
 * Returns a string whose value is this string, with any leading and trailing
 * whitespace removed.
 * <p>
 * If this {@code String} object represents an empty character
 * sequence, or the first and last characters of character sequence
 * represented by this {@code String} object both have codes
 * greater than {@code '\u005Cu0020'} (the space character), then a
 * reference to this {@code String} object is returned.
 * <p>
 * Otherwise, if there is no character with a code greater than
 * {@code '\u005Cu0020'} in the string, then a
 * {@code String} object representing an empty string is
 * returned.
 * <p>
 * Otherwise, let <i>k</i> be the index of the first character in the
 * string whose code is greater than {@code '\u005Cu0020'}, and let
 * <i>m</i> be the index of the last character in the string whose code
 * is greater than {@code '\u005Cu0020'}. A {@code String}
 * object is returned, representing the substring of this string that
 * begins with the character at index <i>k</i> and ends with the
 * character at index <i>m</i>-that is, the result of
 * {@code this.substring(k, m + 1)}.
 * <p>
 * This method may be used to trim whitespace (as defined above) from
 * the beginning and end of a string.
 *
 * @return  A string whose value is this string, with any leading and trailing white
 *          space removed, or this string if it has no leading or
 *          trailing white space.
 */
public String trim() {
    int len = value.length;
    int st = 0;
    char[] val = value;    /* avoid getfield opcode */

    while ((st < len) && (val[st] <= ' ')) {
        st++;
    }
    while ((st < len) && (val[len - 1] <= ' ')) {
        len--;
    }
    return ((st > 0) || (len < value.length)) ? substring(st, len) : this;
}

返回对象内 value 的备份:

/**
 * Converts this string to a new character array.
 *
 * @return  a newly allocated character array whose length is the length
 *          of this string and whose contents are initialized to contain
 *          the character sequence represented by this string.
 */
public char[] toCharArray() {
    // Cannot use Arrays.copyOf because of class initialization order issues
    char result[] = new char[value.length];
    System.arraycopy(value, 0, result, 0, value.length);
    return result;
}

其余是一些较为简单的实现,或者与 正则 相关,就不在这里分析了。


Edit this page on GitHub
Prev
Class - java.lang.Integer
Next
Class - java.lang.ThreadLocal