Chapter 4.9 - slist
Created by : Mr Dk.
2021 / 04 / 05 11:22
Nanjing, Jiangsu, China
4.9.1 slist 概述
STL 的 list 是双向链表。SGI STL 还另外提供了一个单向链表 slist。该容器不在标准规格以内。slist 的迭代器是单项的 forward iterator,而 list 的迭代器是双向的 bidirectional iterator。因此,slist 的功能受到了许多限制。它们的共同点是,对容器进行修改操作不太容易使迭代器失效 (因为只是修改了部分指针)。
根据 STL 的习惯,插入操作发生在迭代器指定的结点之前,而由于单向链表没有办法获得前一个结点的引用,因此,slist 需要从头开始寻找插入位置。也就是说,除了在 slist 起点附近,调用 insert()
或 erase()
都是不智的。根据 slist 的特性,slist 特别提供了 insert_after()
和 erase_after()
。另外,出于效率考虑,slist 只提供 push_front()
,不提供 push_back()
。
4.9.2 slist 的结点
结点运用继承关系定义:
struct _Slist_node_base
{
_Slist_node_base* _M_next;
};
template <class _Tp>
struct _Slist_node : public _Slist_node_base
{
_Tp _M_data;
};
链接新结点:
inline _Slist_node_base*
__slist_make_link(_Slist_node_base* __prev_node,
_Slist_node_base* __new_node)
{
__new_node->_M_next = __prev_node->_M_next;
__prev_node->_M_next = __new_node;
return __new_node;
}
获得某个结点的前一个结点 (需要从头开始找):
inline _Slist_node_base*
__slist_previous(_Slist_node_base* __head,
const _Slist_node_base* __node)
{
while (__head && __head->_M_next != __node)
__head = __head->_M_next;
return __head;
}
inline const _Slist_node_base*
__slist_previous(const _Slist_node_base* __head,
const _Slist_node_base* __node)
{
while (__head && __head->_M_next != __node)
__head = __head->_M_next;
return __head;
}
获取结点个数 (从前开始找):
inline size_t __slist_size(_Slist_node_base* __node)
{
size_t __result = 0;
for ( ; __node != 0; __node = __node->_M_next)
++__result;
return __result;
}
4.9.3 slist 的迭代器
内部维护了一个指向结点的指针。
struct _Slist_iterator_base
{
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef forward_iterator_tag iterator_category; // 单向迭代器
_Slist_node_base* _M_node; // 指向结点的指针
_Slist_iterator_base(_Slist_node_base* __x) : _M_node(__x) {}
void _M_incr() { _M_node = _M_node->_M_next; }
bool operator==(const _Slist_iterator_base& __x) const {
return _M_node == __x._M_node;
}
bool operator!=(const _Slist_iterator_base& __x) const {
return _M_node != __x._M_node;
}
};
template <class _Tp, class _Ref, class _Ptr>
struct _Slist_iterator : public _Slist_iterator_base
{
typedef _Slist_iterator<_Tp, _Tp&, _Tp*> iterator;
typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
typedef _Slist_iterator<_Tp, _Ref, _Ptr> _Self;
typedef _Tp value_type;
typedef _Ptr pointer;
typedef _Ref reference;
typedef _Slist_node<_Tp> _Node;
_Slist_iterator(_Node* __x) : _Slist_iterator_base(__x) {}
_Slist_iterator() : _Slist_iterator_base(0) {}
_Slist_iterator(const iterator& __x) : _Slist_iterator_base(__x._M_node) {}
reference operator*() const { return ((_Node*) _M_node)->_M_data; }
pointer operator->() const { return &(operator*()); }
_Self& operator++()
{
_M_incr();
return *this;
}
_Self operator++(int)
{
_Self __tmp = *this;
_M_incr();
return __tmp;
}
};
4.9.4 slist 的数据结构
slist 内维护了一个实物头结点。
template <class _Tp, class _Alloc>
struct _Slist_base {
typedef _Alloc allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Slist_base(const allocator_type&) { _M_head._M_next = 0; }
~_Slist_base() { _M_erase_after(&_M_head, 0); }
protected:
typedef simple_alloc<_Slist_node<_Tp>, _Alloc> _Alloc_type; // 以结点为单位分配内存
_Slist_node<_Tp>* _M_get_node() { return _Alloc_type::allocate(1); }
void _M_put_node(_Slist_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); }
_Slist_node_base* _M_erase_after(_Slist_node_base* __pos)
{
_Slist_node<_Tp>* __next = (_Slist_node<_Tp>*) (__pos->_M_next);
_Slist_node_base* __next_next = __next->_M_next;
__pos->_M_next = __next_next; // 取下结点
destroy(&__next->_M_data); // 析构结点
_M_put_node(__next); // 释放结点空间
return __next_next;
}
_Slist_node_base* _M_erase_after(_Slist_node_base*, _Slist_node_base*);
protected:
_Slist_node_base _M_head; // 头结点 (不是结点指针,而就是一个结点)
};
删除一个范围以内的结点 (由范围之前的一个结点和范围内最后一个结点的下一个结点指示):
template <class _Tp, class _Alloc>
_Slist_node_base*
_Slist_base<_Tp,_Alloc>::_M_erase_after(_Slist_node_base* __before_first,
_Slist_node_base* __last_node) {
_Slist_node<_Tp>* __cur = (_Slist_node<_Tp>*) (__before_first->_M_next);
while (__cur != __last_node) {
_Slist_node<_Tp>* __tmp = __cur;
__cur = (_Slist_node<_Tp>*) __cur->_M_next;
destroy(&__tmp->_M_data);
_M_put_node(__tmp);
}
__before_first->_M_next = __last_node; // before_first 和 last_node 都被保留了
return __last_node;
}
slist 主类:
template <class _Tp, class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
class slist : private _Slist_base<_Tp,_Alloc>
{
// requirements:
__STL_CLASS_REQUIRES(_Tp, _Assignable);
private:
typedef _Slist_base<_Tp,_Alloc> _Base;
public:
typedef _Tp value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Slist_iterator<_Tp, _Tp&, _Tp*> iterator;
typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
typedef typename _Base::allocator_type allocator_type;
allocator_type get_allocator() const { return _Base::get_allocator(); }
private:
typedef _Slist_node<_Tp> _Node;
typedef _Slist_node_base _Node_base;
typedef _Slist_iterator_base _Iterator_base;
_Node* _M_create_node(const value_type& __x) {
_Node* __node = this->_M_get_node(); // 分配结点空间
__STL_TRY {
construct(&__node->_M_data, __x); // 拷贝构造结点
__node->_M_next = 0;
}
__STL_UNWIND(this->_M_put_node(__node));
return __node;
}
_Node* _M_create_node() {
_Node* __node = this->_M_get_node(); // 分配结点空间
__STL_TRY {
construct(&__node->_M_data); // 拷贝构造结点
__node->_M_next = 0;
}
__STL_UNWIND(this->_M_put_node(__node));
return __node;
}
public:
explicit slist(const allocator_type& __a = allocator_type()) : _Base(__a) {}
slist(size_type __n, const value_type& __x,
const allocator_type& __a = allocator_type()) : _Base(__a)
{ _M_insert_after_fill(&this->_M_head, __n, __x); }
explicit slist(size_type __n) : _Base(allocator_type())
{ _M_insert_after_fill(&this->_M_head, __n, value_type()); }
slist(const_iterator __first, const_iterator __last,
const allocator_type& __a = allocator_type()) : _Base(__a)
{ _M_insert_after_range(&this->_M_head, __first, __last); }
slist(const value_type* __first, const value_type* __last,
const allocator_type& __a = allocator_type()) : _Base(__a)
{ _M_insert_after_range(&this->_M_head, __first, __last); }
slist(const slist& __x) : _Base(__x.get_allocator())
{ _M_insert_after_range(&this->_M_head, __x.begin(), __x.end()); }
slist& operator= (const slist& __x);
~slist() {}
// ...
};
迭代器与相关操作:
iterator begin() { return iterator((_Node*)this->_M_head._M_next); } // 头结点的下一个元素
const_iterator begin() const
{ return const_iterator((_Node*)this->_M_head._M_next);}
iterator end() { return iterator(0); } // 空指针
const_iterator end() const { return const_iterator(0); }
// Experimental new feature: before_begin() returns a
// non-dereferenceable iterator that, when incremented, yields
// begin(). This iterator may be used as the argument to
// insert_after, erase_after, etc. Note that even for an empty
// slist, before_begin() is not the same iterator as end(). It
// is always necessary to increment before_begin() at least once to
// obtain end().
iterator before_begin() { return iterator((_Node*) &this->_M_head); } // 头结点
const_iterator before_begin() const
{ return const_iterator((_Node*) &this->_M_head); }
size_type size() const { return __slist_size(this->_M_head._M_next); }
size_type max_size() const { return size_type(-1); }
bool empty() const { return this->_M_head._M_next == 0; }
void swap(slist& __x)
{ __STD::swap(this->_M_head._M_next, __x._M_head._M_next); } // 交换两个头结点的 next
支持从 slist 的头部进行操作:
reference front() { return ((_Node*) this->_M_head._M_next)->_M_data; }
const_reference front() const
{ return ((_Node*) this->_M_head._M_next)->_M_data; }
void push_front(const value_type& __x) {
__slist_make_link(&this->_M_head, _M_create_node(__x));
}
void push_front() { __slist_make_link(&this->_M_head, _M_create_node()); }
void pop_front() {
_Node* __node = (_Node*) this->_M_head._M_next;
this->_M_head._M_next = __node->_M_next;
destroy(&__node->_M_data);
this->_M_put_node(__node);
}
返回迭代器的前一个位置 (需要从头遍历):
iterator previous(const_iterator __pos) {
return iterator((_Node*) __slist_previous(&this->_M_head, __pos._M_node));
}
const_iterator previous(const_iterator __pos) const {
return const_iterator((_Node*) __slist_previous(&this->_M_head,
__pos._M_node));
}
效率较高的插入:insert_after()
:
_Node* _M_insert_after(_Node_base* __pos, const value_type& __x) {
return (_Node*) (__slist_make_link(__pos, _M_create_node(__x))); // 在当前位置之后插入
}
_Node* _M_insert_after(_Node_base* __pos) {
return (_Node*) (__slist_make_link(__pos, _M_create_node())); // 在当前位置之后插入
}
void _M_insert_after_fill(_Node_base* __pos,
size_type __n, const value_type& __x) {
for (size_type __i = 0; __i < __n; ++__i)
__pos = __slist_make_link(__pos, _M_create_node(__x)); // 在当前位置之后插入多个
}
void _M_insert_after_range(_Node_base* __pos, // 在当前位置之后插入一个范围
const_iterator __first, const_iterator __last) {
while (__first != __last) {
__pos = __slist_make_link(__pos, _M_create_node(*__first));
++__first;
}
}
void _M_insert_after_range(_Node_base* __pos, // 在当前位置之后插入一个范围
const value_type* __first,
const value_type* __last) {
while (__first != __last) {
__pos = __slist_make_link(__pos, _M_create_node(*__first));
++__first;
}
}