Mr Dk.'s BlogMr Dk.'s Blog
  • 🦆 About Me
  • ⛏️ Technology Stack
  • 🔗 Links
  • 🗒️ About Blog
  • Algorithm
  • C++
  • Compiler
  • Cryptography
  • DevOps
  • Docker
  • Git
  • Java
  • Linux
  • MS Office
  • MySQL
  • Network
  • Operating System
  • Performance
  • PostgreSQL
  • Productivity
  • Solidity
  • Vue.js
  • Web
  • Wireless
  • 🐧 How Linux Works (notes)
  • 🐧 Linux Kernel Comments (notes)
  • 🐧 Linux Kernel Development (notes)
  • 🐤 μc/OS-II Source Code (notes)
  • ☕ Understanding the JVM (notes)
  • ⛸️ Redis Implementation (notes)
  • 🗜️ Understanding Nginx (notes)
  • ⚙️ Netty in Action (notes)
  • ☁️ Spring Microservices (notes)
  • ⚒️ The Annotated STL Sources (notes)
  • ☕ Java Development Kit 8
GitHub
  • 🦆 About Me
  • ⛏️ Technology Stack
  • 🔗 Links
  • 🗒️ About Blog
  • Algorithm
  • C++
  • Compiler
  • Cryptography
  • DevOps
  • Docker
  • Git
  • Java
  • Linux
  • MS Office
  • MySQL
  • Network
  • Operating System
  • Performance
  • PostgreSQL
  • Productivity
  • Solidity
  • Vue.js
  • Web
  • Wireless
  • 🐧 How Linux Works (notes)
  • 🐧 Linux Kernel Comments (notes)
  • 🐧 Linux Kernel Development (notes)
  • 🐤 μc/OS-II Source Code (notes)
  • ☕ Understanding the JVM (notes)
  • ⛸️ Redis Implementation (notes)
  • 🗜️ Understanding Nginx (notes)
  • ⚙️ Netty in Action (notes)
  • ☁️ Spring Microservices (notes)
  • ⚒️ The Annotated STL Sources (notes)
  • ☕ Java Development Kit 8
GitHub
  • 🐤 μc/OS-II Source Code
    • Chapter 1 - 嵌入式系统导论
    • Chapter 2 - 嵌入式操作系统中的基本概念
    • Chapter 3 - 任务管理

      • Chapter 3.1 - 核心任务管理
      • Chapter 3.2 - 用户任务管理
    • Chapter 4 - 中断与时间管理
    • Chapter 5 - 事件控制块
    • Chapter 6 - 信号量与互斥信号量管理

      • Chapter 6.1 - 信号量管理
      • Chapter 6.2 - 互斥信号量管理
    • Chapter 7 - 消息管理

      • Chapter 7.1 - 消息邮箱管理
      • Chapter 7.2 - 消息队列管理
    • Chapter 8 - 事件标志组
    • Chapter 9 - 内存管理

Chapter 6.2 - 互斥信号量管理

Created by : Mr Dk.

2019 / 11 / 20 09:50

Nanjing, Jiangsu, China


6.2.1 概述

互斥信号量 (Mutual Exclusion Semaphores) 也是一个二值信号量。但不同的是,它能够解决 优先级反转问题:当高优先级任务需要使用某个共享资源,而资源又被一个低优先级的任务所占用。为了解决优先级反转,应该将低优先级任务的优先级提高到高于优先级任务的优先级,直到低优先级任务处理完毕共享资源。

μC/OS-II 的解决方法:将占用共享资源的低优先级任务的优先级提升到略高于高优先级任务的优先级,优先级继承优先级 (Priority Inderitance Priority, PIP)。所以互斥信号量在 ECB 中的有效部分包含:

  • 表示互斥信号量的标志
  • PIP
  • 等待任务列表

同样,互斥信号量可以在编译前直接被剪裁掉。

6.2.2 建立互斥信号量 - OSMutexCreate() 函数

用于建立和初始化 mutex,显然需要在初始化时给出 PIP。

原理:

  • 从空闲 ECB 链表中取出一个 ECB
  • 将 OSEventType 设定为 OS_EVENT_TYPE_MUTEX
  • 将 OSEventCnt 的高 8 位保存 PIP,低 8 位置为 0xFF
  • 当 mutex 被任务占用时,低 8 位用于保存占用任务的优先级
/*
*********************************************************************************************************
*                                  CREATE A MUTUAL EXCLUSION SEMAPHORE
*
* Description: This function creates a mutual exclusion semaphore.
*
* Arguments  : prio          is the priority to use when accessing the mutual exclusion semaphore.  In
*                            other words, when the semaphore is acquired and a higher priority task
*                            attempts to obtain the semaphore then the priority of the task owning the
*                            semaphore is raised to this priority.  It is assumed that you will specify
*                            a priority that is LOWER in value than ANY of the tasks competing for the
*                            mutex.
*
*              perr          is a pointer to an error code which will be returned to your application:
*                               OS_ERR_NONE         if the call was successful.
*                               OS_ERR_CREATE_ISR   if you attempted to create a MUTEX from an ISR
*                               OS_ERR_PRIO_EXIST   if a task at the priority inheritance priority
*                                                   already exist.
*                               OS_ERR_PEVENT_NULL  No more event control blocks available.
*                               OS_ERR_PRIO_INVALID if the priority you specify is higher that the
*                                                   maximum allowed (i.e. > OS_LOWEST_PRIO)
*
* Returns    : != (void *)0  is a pointer to the event control clock (OS_EVENT) associated with the
*                            created mutex.
*              == (void *)0  if an error is detected.
*
* Note(s)    : 1) The LEAST significant 8 bits of '.OSEventCnt' are used to hold the priority number
*                 of the task owning the mutex or 0xFF if no task owns the mutex.
*
*              2) The MOST  significant 8 bits of '.OSEventCnt' are used to hold the priority number
*                 to use to reduce priority inversion.
*********************************************************************************************************
*/

OS_EVENT  *OSMutexCreate (INT8U   prio,
                          INT8U  *perr)
{
    OS_EVENT  *pevent;
#if OS_CRITICAL_METHOD == 3u                               /* Allocate storage for CPU status register */
    OS_CPU_SR  cpu_sr = 0u;
#endif



#ifdef OS_SAFETY_CRITICAL
    if (perr == (INT8U *)0) {
        OS_SAFETY_CRITICAL_EXCEPTION();
    }
#endif

#ifdef OS_SAFETY_CRITICAL_IEC61508
    if (OSSafetyCriticalStartFlag == OS_TRUE) {
        OS_SAFETY_CRITICAL_EXCEPTION();
    }
#endif

#if OS_ARG_CHK_EN > 0u
    if (prio >= OS_LOWEST_PRIO) {                          /* Validate PIP                             */
        *perr = OS_ERR_PRIO_INVALID;
        return ((OS_EVENT *)0);
    }
#endif
    if (OSIntNesting > 0u) {                               /* See if called from ISR ...               */
        *perr = OS_ERR_CREATE_ISR;                         /* ... can't CREATE mutex from an ISR       */
        return ((OS_EVENT *)0);
    }
    OS_ENTER_CRITICAL();
    if (OSTCBPrioTbl[prio] != (OS_TCB *)0) {               /* Mutex priority must not already exist    */
        OS_EXIT_CRITICAL();                                /* Task already exist at priority ...       */
        *perr = OS_ERR_PRIO_EXIST;                         /* ... inheritance priority                 */
        return ((OS_EVENT *)0);
    }
    OSTCBPrioTbl[prio] = OS_TCB_RESERVED;                  /* Reserve the table entry                  */
    pevent             = OSEventFreeList;                  /* Get next free event control block        */
    if (pevent == (OS_EVENT *)0) {                         /* See if an ECB was available              */
        OSTCBPrioTbl[prio] = (OS_TCB *)0;                  /* No, Release the table entry              */
        OS_EXIT_CRITICAL();
        *perr              = OS_ERR_PEVENT_NULL;           /* No more event control blocks             */
        return (pevent);
    }
    OSEventFreeList        = (OS_EVENT *)OSEventFreeList->OSEventPtr;   /* Adjust the free list        */
    OS_EXIT_CRITICAL();
    pevent->OSEventType    = OS_EVENT_TYPE_MUTEX;
    pevent->OSEventCnt     = (INT16U)((INT16U)prio << 8u) | OS_MUTEX_AVAILABLE; /* Resource is avail.  */
    pevent->OSEventPtr     = (void *)0;                                 /* No task owning the mutex    */
#if OS_EVENT_NAME_EN > 0u
    pevent->OSEventName    = (INT8U *)(void *)"?";
#endif
    OS_EventWaitListInit(pevent);
    *perr                  = OS_ERR_NONE;
    return (pevent);
}

6.2.3 删除互斥信号量 - OSMutexDel() 函数

删除一个 mutex。需要指定一个删除选项:

  • OS_DEL_NO_PEND - 仅在没有任何任务等待 mutex 时才删除
  • OS_DEL_ALWAYS - 无论有没有任务等待,都立刻删除 mutex,所有等待 mutex 的任务立刻就绪

原理:将 ECB 中的内容清空,并归还空闲 ECB 链表。

/*
*********************************************************************************************************
*                                          DELETE A MUTEX
*
* Description: This function deletes a mutual exclusion semaphore and readies all tasks pending on the it.
*
* Arguments  : pevent        is a pointer to the event control block associated with the desired mutex.
*
*              opt           determines delete options as follows:
*                            opt == OS_DEL_NO_PEND   Delete mutex ONLY if no task pending
*                            opt == OS_DEL_ALWAYS    Deletes the mutex even if tasks are waiting.
*                                                    In this case, all the tasks pending will be readied.
*
*              perr          is a pointer to an error code that can contain one of the following values:
*                            OS_ERR_NONE             The call was successful and the mutex was deleted
*                            OS_ERR_DEL_ISR          If you attempted to delete the MUTEX from an ISR
*                            OS_ERR_INVALID_OPT      An invalid option was specified
*                            OS_ERR_TASK_WAITING     One or more tasks were waiting on the mutex
*                            OS_ERR_EVENT_TYPE       If you didn't pass a pointer to a mutex
*                            OS_ERR_PEVENT_NULL      If 'pevent' is a NULL pointer.
*
* Returns    : pevent        upon error
*              (OS_EVENT *)0 if the mutex was successfully deleted.
*
* Note(s)    : 1) This function must be used with care.  Tasks that would normally expect the presence of
*                 the mutex MUST check the return code of OSMutexPend().
*
*              2) This call can potentially disable interrupts for a long time.  The interrupt disable
*                 time is directly proportional to the number of tasks waiting on the mutex.
*
*              3) Because ALL tasks pending on the mutex will be readied, you MUST be careful because the
*                 resource(s) will no longer be guarded by the mutex.
*
*              4) IMPORTANT: In the 'OS_DEL_ALWAYS' case, we assume that the owner of the Mutex (if there
*                            is one) is ready-to-run and is thus NOT pending on another kernel object or
*                            has delayed itself.  In other words, if a task owns the mutex being deleted,
*                            that task will be made ready-to-run at its original priority.
*********************************************************************************************************
*/

#if OS_MUTEX_DEL_EN > 0u
OS_EVENT  *OSMutexDel (OS_EVENT  *pevent,
                       INT8U      opt,
                       INT8U     *perr)
{
    BOOLEAN    tasks_waiting;
    OS_EVENT  *pevent_return;
    INT8U      pip;                                        /* Priority inheritance priority            */
    INT8U      prio;
    OS_TCB    *ptcb;
#if OS_CRITICAL_METHOD == 3u                               /* Allocate storage for CPU status register */
    OS_CPU_SR  cpu_sr = 0u;
#endif



#ifdef OS_SAFETY_CRITICAL
    if (perr == (INT8U *)0) {
        OS_SAFETY_CRITICAL_EXCEPTION();
    }
#endif

#if OS_ARG_CHK_EN > 0u
    if (pevent == (OS_EVENT *)0) {                         /* Validate 'pevent'                        */
        *perr = OS_ERR_PEVENT_NULL;
        return (pevent);
    }
#endif
    if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) {      /* Validate event block type                */
        *perr = OS_ERR_EVENT_TYPE;
        return (pevent);
    }
    if (OSIntNesting > 0u) {                               /* See if called from ISR ...               */
        *perr = OS_ERR_DEL_ISR;                             /* ... can't DELETE from an ISR             */
        return (pevent);
    }
    OS_ENTER_CRITICAL();
    if (pevent->OSEventGrp != 0u) {                        /* See if any tasks waiting on mutex        */
        tasks_waiting = OS_TRUE;                           /* Yes                                      */
    } else {
        tasks_waiting = OS_FALSE;                          /* No                                       */
    }
    switch (opt) {
        case OS_DEL_NO_PEND:                               /* DELETE MUTEX ONLY IF NO TASK WAITING --- */
             if (tasks_waiting == OS_FALSE) {
#if OS_EVENT_NAME_EN > 0u
                 pevent->OSEventName = (INT8U *)(void *)"?";
#endif
                 pip                 = (INT8U)(pevent->OSEventCnt >> 8u);
                 OSTCBPrioTbl[pip]   = (OS_TCB *)0;        /* Free up the PIP                          */
                 pevent->OSEventType = OS_EVENT_TYPE_UNUSED;
                 pevent->OSEventPtr  = OSEventFreeList;    /* Return Event Control Block to free list  */
                 pevent->OSEventCnt  = 0u;
                 OSEventFreeList     = pevent;
                 OS_EXIT_CRITICAL();
                 *perr               = OS_ERR_NONE;
                 pevent_return       = (OS_EVENT *)0;      /* Mutex has been deleted                   */
             } else {
                 OS_EXIT_CRITICAL();
                 *perr               = OS_ERR_TASK_WAITING;
                 pevent_return       = pevent;
             }
             break;

        case OS_DEL_ALWAYS:                                /* ALWAYS DELETE THE MUTEX ---------------- */
             pip  = (INT8U)(pevent->OSEventCnt >> 8u);                    /* Get PIP of mutex          */
             prio = (INT8U)(pevent->OSEventCnt & OS_MUTEX_KEEP_LOWER_8);  /* Get owner's original prio */
             ptcb = (OS_TCB *)pevent->OSEventPtr;
             if (ptcb != (OS_TCB *)0) {                    /* See if any task owns the mutex           */
                 if (ptcb->OSTCBPrio == pip) {             /* See if original prio was changed         */
                     OSMutex_RdyAtPrio(ptcb, prio);        /* Yes, Restore the task's original prio    */
                 }
             }
             while (pevent->OSEventGrp != 0u) {            /* Ready ALL tasks waiting for mutex        */
                 (void)OS_EventTaskRdy(pevent, (void *)0, OS_STAT_MUTEX, OS_STAT_PEND_OK);
             }
#if OS_EVENT_NAME_EN > 0u
             pevent->OSEventName = (INT8U *)(void *)"?";
#endif
             pip                 = (INT8U)(pevent->OSEventCnt >> 8u);
             OSTCBPrioTbl[pip]   = (OS_TCB *)0;            /* Free up the PIP                          */
             pevent->OSEventType = OS_EVENT_TYPE_UNUSED;
             pevent->OSEventPtr  = OSEventFreeList;        /* Return Event Control Block to free list  */
             pevent->OSEventCnt  = 0u;
             OSEventFreeList     = pevent;                 /* Get next free event control block        */
             OS_EXIT_CRITICAL();
             if (tasks_waiting == OS_TRUE) {               /* Reschedule only if task(s) were waiting  */
                 OS_Sched();                               /* Find highest priority task ready to run  */
             }
             *perr         = OS_ERR_NONE;
             pevent_return = (OS_EVENT *)0;                /* Mutex has been deleted                   */
             break;

        default:
             OS_EXIT_CRITICAL();
             *perr         = OS_ERR_INVALID_OPT;
             pevent_return = pevent;
             break;
    }
    return (pevent_return);
}
#endif

6.2.4 等待互斥信号量 - OSMutexPend() 函数

等待一个互斥信号量。如果 mutex 已被占用,则将任务加入 mutex 的等待列表中,直到得到 mutex 或延时期满。如果在延时期内 mutex 被释放,等待 mutex 的最高优先级的任务进入就绪状态。

原理:

  • 访问 ECB 中的 OSEventCnt 变量
  • 如果可用,则直接占用 mutex,并将优先级保存在低 8 位中
  • 如果当前 mutex 被占用,且当前任务优先级高于占用者优先级,需要将占用者优先级提升为 PIP
  • 挂起任务,直到得到 mutex 或延时期满
/*
*********************************************************************************************************
*                                  PEND ON MUTUAL EXCLUSION SEMAPHORE
*
* Description: This function waits for a mutual exclusion semaphore.
*
* Arguments  : pevent        is a pointer to the event control block associated with the desired
*                            mutex.
*
*              timeout       is an optional timeout period (in clock ticks).  If non-zero, your task will
*                            wait for the resource up to the amount of time specified by this argument.
*                            If you specify 0, however, your task will wait forever at the specified
*                            mutex or, until the resource becomes available.
*
*              perr          is a pointer to where an error message will be deposited.  Possible error
*                            messages are:
*                               OS_ERR_NONE        The call was successful and your task owns the mutex
*                               OS_ERR_TIMEOUT     The mutex was not available within the specified 'timeout'.
*                               OS_ERR_PEND_ABORT  The wait on the mutex was aborted.
*                               OS_ERR_EVENT_TYPE  If you didn't pass a pointer to a mutex
*                               OS_ERR_PEVENT_NULL 'pevent' is a NULL pointer
*                               OS_ERR_PEND_ISR    If you called this function from an ISR and the result
*                                                  would lead to a suspension.
*                               OS_ERR_PIP_LOWER   If the priority of the task that owns the Mutex is
*                                                  HIGHER (i.e. a lower number) than the PIP.  This error
*                                                  indicates that you did not set the PIP higher (lower
*                                                  number) than ALL the tasks that compete for the Mutex.
*                                                  Unfortunately, this is something that could not be
*                                                  detected when the Mutex is created because we don't know
*                                                  what tasks will be using the Mutex.
*                               OS_ERR_PEND_LOCKED If you called this function when the scheduler is locked
*
* Returns    : none
*
* Note(s)    : 1) The task that owns the Mutex MUST NOT pend on any other event while it owns the mutex.
*
*              2) You MUST NOT change the priority of the task that owns the mutex
*********************************************************************************************************
*/

void  OSMutexPend (OS_EVENT  *pevent,
                   INT32U     timeout,
                   INT8U     *perr)
{
    INT8U      pip;                                        /* Priority Inheritance Priority (PIP)      */
    INT8U      mprio;                                      /* Mutex owner priority                     */
    BOOLEAN    rdy;                                        /* Flag indicating task was ready           */
    OS_TCB    *ptcb;
    OS_EVENT  *pevent2;
    INT8U      y;
#if OS_CRITICAL_METHOD == 3u                               /* Allocate storage for CPU status register */
    OS_CPU_SR  cpu_sr = 0u;
#endif



#ifdef OS_SAFETY_CRITICAL
    if (perr == (INT8U *)0) {
        OS_SAFETY_CRITICAL_EXCEPTION();
    }
#endif

#if OS_ARG_CHK_EN > 0u
    if (pevent == (OS_EVENT *)0) {                         /* Validate 'pevent'                        */
        *perr = OS_ERR_PEVENT_NULL;
        return;
    }
#endif
    if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) {      /* Validate event block type                */
        *perr = OS_ERR_EVENT_TYPE;
        return;
    }
    if (OSIntNesting > 0u) {                               /* See if called from ISR ...               */
        *perr = OS_ERR_PEND_ISR;                           /* ... can't PEND from an ISR               */
        return;
    }
    if (OSLockNesting > 0u) {                              /* See if called with scheduler locked ...  */
        *perr = OS_ERR_PEND_LOCKED;                        /* ... can't PEND when locked               */
        return;
    }
/*$PAGE*/
    OS_ENTER_CRITICAL();
    pip = (INT8U)(pevent->OSEventCnt >> 8u);               /* Get PIP from mutex                       */
                                                           /* Is Mutex available?                      */
    if ((INT8U)(pevent->OSEventCnt & OS_MUTEX_KEEP_LOWER_8) == OS_MUTEX_AVAILABLE) {
        pevent->OSEventCnt &= OS_MUTEX_KEEP_UPPER_8;       /* Yes, Acquire the resource                */
        pevent->OSEventCnt |= OSTCBCur->OSTCBPrio;         /*      Save priority of owning task        */
        pevent->OSEventPtr  = (void *)OSTCBCur;            /*      Point to owning task's OS_TCB       */
        if (OSTCBCur->OSTCBPrio <= pip) {                  /*      PIP 'must' have a SMALLER prio ...  */
            OS_EXIT_CRITICAL();                            /*      ... than current task!              */
            *perr = OS_ERR_PIP_LOWER;
        } else {
            OS_EXIT_CRITICAL();
            *perr = OS_ERR_NONE;
        }
        return;
    }
    mprio = (INT8U)(pevent->OSEventCnt & OS_MUTEX_KEEP_LOWER_8);  /* No, Get priority of mutex owner   */
    ptcb  = (OS_TCB *)(pevent->OSEventPtr);                       /*     Point to TCB of mutex owner   */
    if (ptcb->OSTCBPrio > pip) {                                  /*     Need to promote prio of owner?*/
        if (mprio > OSTCBCur->OSTCBPrio) {
            y = ptcb->OSTCBY;
            if ((OSRdyTbl[y] & ptcb->OSTCBBitX) != 0u) {          /*     See if mutex owner is ready   */
                OSRdyTbl[y] &= (OS_PRIO)~ptcb->OSTCBBitX;         /*     Yes, Remove owner from Rdy ...*/
                if (OSRdyTbl[y] == 0u) {                          /*          ... list at current prio */
                    OSRdyGrp &= (OS_PRIO)~ptcb->OSTCBBitY;
                }
                rdy = OS_TRUE;
            } else {
                pevent2 = ptcb->OSTCBEventPtr;
                if (pevent2 != (OS_EVENT *)0) {                   /* Remove from event wait list       */
                    y = ptcb->OSTCBY;
                    pevent2->OSEventTbl[y] &= (OS_PRIO)~ptcb->OSTCBBitX;
                    if (pevent2->OSEventTbl[y] == 0u) {
                        pevent2->OSEventGrp &= (OS_PRIO)~ptcb->OSTCBBitY;
                    }
                }
                rdy = OS_FALSE;                            /* No                                       */
            }
            ptcb->OSTCBPrio = pip;                         /* Change owner task prio to PIP            */
#if OS_LOWEST_PRIO <= 63u
            ptcb->OSTCBY    = (INT8U)( ptcb->OSTCBPrio >> 3u);
            ptcb->OSTCBX    = (INT8U)( ptcb->OSTCBPrio & 0x07u);
#else
            ptcb->OSTCBY    = (INT8U)((INT8U)(ptcb->OSTCBPrio >> 4u) & 0xFFu);
            ptcb->OSTCBX    = (INT8U)( ptcb->OSTCBPrio & 0x0Fu);
#endif
            ptcb->OSTCBBitY = (OS_PRIO)(1uL << ptcb->OSTCBY);
            ptcb->OSTCBBitX = (OS_PRIO)(1uL << ptcb->OSTCBX);

            if (rdy == OS_TRUE) {                          /* If task was ready at owner's priority ...*/
                OSRdyGrp               |= ptcb->OSTCBBitY; /* ... make it ready at new priority.       */
                OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;
            } else {
                pevent2 = ptcb->OSTCBEventPtr;
                if (pevent2 != (OS_EVENT *)0) {            /* Add to event wait list                   */
                    pevent2->OSEventGrp               |= ptcb->OSTCBBitY;
                    pevent2->OSEventTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;
                }
            }
            OSTCBPrioTbl[pip] = ptcb;
        }
    }
    OSTCBCur->OSTCBStat     |= OS_STAT_MUTEX;         /* Mutex not available, pend current task        */
    OSTCBCur->OSTCBStatPend  = OS_STAT_PEND_OK;
    OSTCBCur->OSTCBDly       = timeout;               /* Store timeout in current task's TCB           */
    OS_EventTaskWait(pevent);                         /* Suspend task until event or timeout occurs    */
    OS_EXIT_CRITICAL();
    OS_Sched();                                       /* Find next highest priority task ready         */
    OS_ENTER_CRITICAL();
    switch (OSTCBCur->OSTCBStatPend) {                /* See if we timed-out or aborted                */
        case OS_STAT_PEND_OK:
             *perr = OS_ERR_NONE;
             break;

        case OS_STAT_PEND_ABORT:
             *perr = OS_ERR_PEND_ABORT;               /* Indicate that we aborted getting mutex        */
             break;

        case OS_STAT_PEND_TO:
        default:
             OS_EventTaskRemove(OSTCBCur, pevent);
             *perr = OS_ERR_TIMEOUT;                  /* Indicate that we didn't get mutex within TO   */
             break;
    }
    OSTCBCur->OSTCBStat          =  OS_STAT_RDY;      /* Set   task  status to ready                   */
    OSTCBCur->OSTCBStatPend      =  OS_STAT_PEND_OK;  /* Clear pend  status                            */
    OSTCBCur->OSTCBEventPtr      = (OS_EVENT  *)0;    /* Clear event pointers                          */
#if (OS_EVENT_MULTI_EN > 0u)
    OSTCBCur->OSTCBEventMultiPtr = (OS_EVENT **)0;
#endif
    OS_EXIT_CRITICAL();
}

6.2.5 释放互斥信号量 - OSMutexPost() 函数

发出一个 mutex:

  • 如果 mutex 占用者的优先级已经被升高,则恢复原优先级
  • 如果多个任务在等待 mutex,则具有最高优先级的任务获得 mutex,并进行任务切换

原理:

  • 检查 mutex 释放者的优先级是否被提升;如果提升,则恢复至原有优先级
  • 检查是否有任务在等待该 mutex
    • 如果有,则最高优先级的任务得到这个 mutex
    • 如果没有,则将 mutex 置为可用状态
/*
*********************************************************************************************************
*                                  POST TO A MUTUAL EXCLUSION SEMAPHORE
*
* Description: This function signals a mutual exclusion semaphore
*
* Arguments  : pevent              is a pointer to the event control block associated with the desired
*                                  mutex.
*
* Returns    : OS_ERR_NONE             The call was successful and the mutex was signaled.
*              OS_ERR_EVENT_TYPE       If you didn't pass a pointer to a mutex
*              OS_ERR_PEVENT_NULL      'pevent' is a NULL pointer
*              OS_ERR_POST_ISR         Attempted to post from an ISR (not valid for MUTEXes)
*              OS_ERR_NOT_MUTEX_OWNER  The task that did the post is NOT the owner of the MUTEX.
*              OS_ERR_PIP_LOWER        If the priority of the new task that owns the Mutex is
*                                      HIGHER (i.e. a lower number) than the PIP.  This error
*                                      indicates that you did not set the PIP higher (lower
*                                      number) than ALL the tasks that compete for the Mutex.
*                                      Unfortunately, this is something that could not be
*                                      detected when the Mutex is created because we don't know
*                                      what tasks will be using the Mutex.
*********************************************************************************************************
*/

INT8U  OSMutexPost (OS_EVENT *pevent)
{
    INT8U      pip;                                   /* Priority inheritance priority                 */
    INT8U      prio;
#if OS_CRITICAL_METHOD == 3u                          /* Allocate storage for CPU status register      */
    OS_CPU_SR  cpu_sr = 0u;
#endif



    if (OSIntNesting > 0u) {                          /* See if called from ISR ...                    */
        return (OS_ERR_POST_ISR);                     /* ... can't POST mutex from an ISR              */
    }
#if OS_ARG_CHK_EN > 0u
    if (pevent == (OS_EVENT *)0) {                    /* Validate 'pevent'                             */
        return (OS_ERR_PEVENT_NULL);
    }
#endif
    if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) { /* Validate event block type                     */
        return (OS_ERR_EVENT_TYPE);
    }
    OS_ENTER_CRITICAL();
    pip  = (INT8U)(pevent->OSEventCnt >> 8u);         /* Get priority inheritance priority of mutex    */
    prio = (INT8U)(pevent->OSEventCnt & OS_MUTEX_KEEP_LOWER_8);  /* Get owner's original priority      */
    if (OSTCBCur != (OS_TCB *)pevent->OSEventPtr) {   /* See if posting task owns the MUTEX            */
        OS_EXIT_CRITICAL();
        return (OS_ERR_NOT_MUTEX_OWNER);
    }
    if (OSTCBCur->OSTCBPrio == pip) {                 /* Did we have to raise current task's priority? */
        OSMutex_RdyAtPrio(OSTCBCur, prio);            /* Restore the task's original priority          */
    }
    OSTCBPrioTbl[pip] = OS_TCB_RESERVED;              /* Reserve table entry                           */
    if (pevent->OSEventGrp != 0u) {                   /* Any task waiting for the mutex?               */
                                                      /* Yes, Make HPT waiting for mutex ready         */
        prio                = OS_EventTaskRdy(pevent, (void *)0, OS_STAT_MUTEX, OS_STAT_PEND_OK);
        pevent->OSEventCnt &= OS_MUTEX_KEEP_UPPER_8;  /*      Save priority of mutex's new owner       */
        pevent->OSEventCnt |= prio;
        pevent->OSEventPtr  = OSTCBPrioTbl[prio];     /*      Link to new mutex owner's OS_TCB         */
        if (prio <= pip) {                            /*      PIP 'must' have a SMALLER prio ...       */
            OS_EXIT_CRITICAL();                       /*      ... than current task!                   */
            OS_Sched();                               /*      Find highest priority task ready to run  */
            return (OS_ERR_PIP_LOWER);
        } else {
            OS_EXIT_CRITICAL();
            OS_Sched();                               /*      Find highest priority task ready to run  */
            return (OS_ERR_NONE);
        }
    }
    pevent->OSEventCnt |= OS_MUTEX_AVAILABLE;         /* No,  Mutex is now available                   */
    pevent->OSEventPtr  = (void *)0;
    OS_EXIT_CRITICAL();
    return (OS_ERR_NONE);
}

6.2.6 无等待地获取互斥信号量 - OSMutexAccept() 函数

查看互斥信号量是否可用。调用者不会被挂起。

原理:通过判断 ECB OSEventCnt 的低 8 位判断 mutex 是否可用

  • 如果可用,则将调用者优先级保存至低 8 位,并占用 mutex
  • 如果不可用,则返回 0
/*
*********************************************************************************************************
*                                   ACCEPT MUTUAL EXCLUSION SEMAPHORE
*
* Description: This  function checks the mutual exclusion semaphore to see if a resource is available.
*              Unlike OSMutexPend(), OSMutexAccept() does not suspend the calling task if the resource is
*              not available or the event did not occur.
*
* Arguments  : pevent     is a pointer to the event control block
*
*              perr       is a pointer to an error code which will be returned to your application:
*                            OS_ERR_NONE         if the call was successful.
*                            OS_ERR_EVENT_TYPE   if 'pevent' is not a pointer to a mutex
*                            OS_ERR_PEVENT_NULL  'pevent' is a NULL pointer
*                            OS_ERR_PEND_ISR     if you called this function from an ISR
*                            OS_ERR_PIP_LOWER    If the priority of the task that owns the Mutex is
*                                                HIGHER (i.e. a lower number) than the PIP.  This error
*                                                indicates that you did not set the PIP higher (lower
*                                                number) than ALL the tasks that compete for the Mutex.
*                                                Unfortunately, this is something that could not be
*                                                detected when the Mutex is created because we don't know
*                                                what tasks will be using the Mutex.
*
* Returns    : == OS_TRUE    if the resource is available, the mutual exclusion semaphore is acquired
*              == OS_FALSE   a) if the resource is not available
*                            b) you didn't pass a pointer to a mutual exclusion semaphore
*                            c) you called this function from an ISR
*
* Warning(s) : This function CANNOT be called from an ISR because mutual exclusion semaphores are
*              intended to be used by tasks only.
*********************************************************************************************************
*/

#if OS_MUTEX_ACCEPT_EN > 0u
BOOLEAN  OSMutexAccept (OS_EVENT  *pevent,
                        INT8U     *perr)
{
    INT8U      pip;                                    /* Priority Inheritance Priority (PIP)          */
#if OS_CRITICAL_METHOD == 3u                           /* Allocate storage for CPU status register     */
    OS_CPU_SR  cpu_sr = 0u;
#endif



#ifdef OS_SAFETY_CRITICAL
    if (perr == (INT8U *)0) {
        OS_SAFETY_CRITICAL_EXCEPTION();
    }
#endif

#if OS_ARG_CHK_EN > 0u
    if (pevent == (OS_EVENT *)0) {                     /* Validate 'pevent'                            */
        *perr = OS_ERR_PEVENT_NULL;
        return (OS_FALSE);
    }
#endif
    if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) {  /* Validate event block type                    */
        *perr = OS_ERR_EVENT_TYPE;
        return (OS_FALSE);
    }
    if (OSIntNesting > 0u) {                           /* Make sure it's not called from an ISR        */
        *perr = OS_ERR_PEND_ISR;
        return (OS_FALSE);
    }
    OS_ENTER_CRITICAL();                               /* Get value (0 or 1) of Mutex                  */
    pip = (INT8U)(pevent->OSEventCnt >> 8u);           /* Get PIP from mutex                           */
    if ((pevent->OSEventCnt & OS_MUTEX_KEEP_LOWER_8) == OS_MUTEX_AVAILABLE) {
        pevent->OSEventCnt &= OS_MUTEX_KEEP_UPPER_8;   /*      Mask off LSByte (Acquire Mutex)         */
        pevent->OSEventCnt |= OSTCBCur->OSTCBPrio;     /*      Save current task priority in LSByte    */
        pevent->OSEventPtr  = (void *)OSTCBCur;        /*      Link TCB of task owning Mutex           */
        if (OSTCBCur->OSTCBPrio <= pip) {              /*      PIP 'must' have a SMALLER prio ...      */
            OS_EXIT_CRITICAL();                        /*      ... than current task!                  */
            *perr = OS_ERR_PIP_LOWER;
        } else {
            OS_EXIT_CRITICAL();
            *perr = OS_ERR_NONE;
        }
        return (OS_TRUE);
    }
    OS_EXIT_CRITICAL();
    *perr = OS_ERR_NONE;
    return (OS_FALSE);
}
#endif

6.2.7 获取当前互斥信号量的状态 - OSMutexQuery() 函数

通过 OS_MUTEX_DATA 数据结构来复制 mutex ECB 中当前的状态。

/*
*********************************************************************************************************
*                                     QUERY A MUTUAL EXCLUSION SEMAPHORE
*
* Description: This function obtains information about a mutex
*
* Arguments  : pevent          is a pointer to the event control block associated with the desired mutex
*
*              p_mutex_data    is a pointer to a structure that will contain information about the mutex
*
* Returns    : OS_ERR_NONE          The call was successful and the message was sent
*              OS_ERR_QUERY_ISR     If you called this function from an ISR
*              OS_ERR_PEVENT_NULL   If 'pevent'       is a NULL pointer
*              OS_ERR_PDATA_NULL    If 'p_mutex_data' is a NULL pointer
*              OS_ERR_EVENT_TYPE    If you are attempting to obtain data from a non mutex.
*********************************************************************************************************
*/

#if OS_MUTEX_QUERY_EN > 0u
INT8U  OSMutexQuery (OS_EVENT       *pevent,
                     OS_MUTEX_DATA  *p_mutex_data)
{
    INT8U       i;
    OS_PRIO    *psrc;
    OS_PRIO    *pdest;
#if OS_CRITICAL_METHOD == 3u                     /* Allocate storage for CPU status register           */
    OS_CPU_SR   cpu_sr = 0u;
#endif



    if (OSIntNesting > 0u) {                               /* See if called from ISR ...               */
        return (OS_ERR_QUERY_ISR);                         /* ... can't QUERY mutex from an ISR        */
    }
#if OS_ARG_CHK_EN > 0u
    if (pevent == (OS_EVENT *)0) {                         /* Validate 'pevent'                        */
        return (OS_ERR_PEVENT_NULL);
    }
    if (p_mutex_data == (OS_MUTEX_DATA *)0) {              /* Validate 'p_mutex_data'                  */
        return (OS_ERR_PDATA_NULL);
    }
#endif
    if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) {      /* Validate event block type                */
        return (OS_ERR_EVENT_TYPE);
    }
    OS_ENTER_CRITICAL();
    p_mutex_data->OSMutexPIP  = (INT8U)(pevent->OSEventCnt >> 8u);
    p_mutex_data->OSOwnerPrio = (INT8U)(pevent->OSEventCnt & OS_MUTEX_KEEP_LOWER_8);
    if (p_mutex_data->OSOwnerPrio == 0xFFu) {
        p_mutex_data->OSValue = OS_TRUE;
    } else {
        p_mutex_data->OSValue = OS_FALSE;
    }
    p_mutex_data->OSEventGrp  = pevent->OSEventGrp;        /* Copy wait list                           */
    psrc                      = &pevent->OSEventTbl[0];
    pdest                     = &p_mutex_data->OSEventTbl[0];
    for (i = 0u; i < OS_EVENT_TBL_SIZE; i++) {
        *pdest++ = *psrc++;
    }
    OS_EXIT_CRITICAL();
    return (OS_ERR_NONE);
}
#endif

Summary

与普通的信号量基本相同吧,需要注意的是对于 PIP 的处理。

Edit this page on GitHub
Prev
Chapter 6.1 - 信号量管理